
Debugging with GDB

The gnu Source-Level Debugger
(HP 9000 Systems)

Edition Seventh-HP, for HP WDB Version 1.0 (based on GDB 4.16)
February 1999

Richard M. Stallman and Cygnus Support (modi�ed by HP)

Debugging with GDB

TEXinfo 2.122

Copyright c
 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1997, 1999 Free Software Foundation,

Inc.

Permission is granted to make and distribute verbatim copies of this manual provided the copyright

notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modi�ed versions of this manual under the conditions

for verbatim copying, provided also that the entire resulting derived work is distributed under the

terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another language,

under the above conditions for modi�ed versions.

Summary of GDB 1

Summary of GDB

The purpose of a debugger such as GDB is to allow you to see what is going on \inside" another

program while it executes|or what another program was doing at the moment it crashed.

GDB can do four main kinds of things (plus other things in support of these) to help you catch

bugs in the act:

� Start your program, specifying anything that might a�ect its behavior.

� Make your program stop on speci�ed conditions.

� Examine what has happened, when your program has stopped.

� Change things in your program, so you can experiment with correcting the e�ects of one bug

and go on to learn about another.

You can use GDB to debug programs written in C or C++. For more information, see Section 9.3

[Supported languages], page 89.

This version of the manual documents HP Wildebeest (WDB) Version 1.0, implemented on HP

9000 systems running Release 10.20 or 11.00 of the HP-UX operating system. HP WDB 1.0 can

be used to debug code generated by the HP ANSI C, HP ANSI C++, and HP Fortran compilers

as well as the gnu C and C++ compilers. It does not support the debugging of Modula-2 or Chill

programs.

Free software

GDB is free software, protected by the gnu General Public License (GPL). The GPL gives you

the freedom to copy or adapt a licensed program|but every person getting a copy also gets with

it the freedom to modify that copy (which means that they must get access to the source code),

and the freedom to distribute further copies. Typical software companies use copyrights to limit

your freedoms; the Free Software Foundation uses the GPL to preserve these freedoms.

Fundamentally, the General Public License is a license which says that you have these freedoms

and that you cannot take these freedoms away from anyone else.

2 Debugging with GDB (HP 9000 Systems)

Contributors to GDB

Richard Stallman was the original author of GDB, and of many other gnu programs. Many

others have contributed to its development. This section attempts to credit major contributors.

One of the virtues of free software is that everyone is free to contribute to it; with regret, we cannot

actually acknowledge everyone here. The �le `ChangeLog' in the GDB distribution approximates a

blow-by-blow account.

Changes much prior to version 2.0 are lost in the mists of time.

Plea: Additions to this section are particularly welcome. If you or your friends (or
enemies, to be evenhanded) have been unfairly omitted from this list, we would like to
add your names!

So that they may not regard their long labor as thankless, we particularly thank those who

shepherded GDB through major releases: Stan Shebs (release 4.14), Fred Fish (releases 4.13, 4.12,

4.11, 4.10, and 4.9), Stu Grossman and John Gilmore (releases 4.8, 4.7, 4.6, 4.5, and 4.4), John

Gilmore (releases 4.3, 4.2, 4.1, 4.0, and 3.9); Jim Kingdon (releases 3.5, 3.4, and 3.3); and Randy

Smith (releases 3.2, 3.1, and 3.0). As major maintainer of GDB for some period, each contributed

signi�cantly to the structure, stability, and capabilities of the entire debugger.

Richard Stallman, assisted at various times by Peter TerMaat, Chris Hanson, and Richard

Mlynarik, handled releases through 2.8.

Michael Tiemann is the author of most of the gnu C++ support in GDB, with signi�cant

additional contributions from Per Bothner. James Clark wrote the gnu C++ demangler. Early

work on C++ was by Peter TerMaat (who also did much general update work leading to release

3.0).

GDB 4 uses the BFD subroutine library to examine multiple object-�le formats; BFD was a

joint project of David V. Henkel-Wallace, Rich Pixley, Steve Chamberlain, and John Gilmore.

David Johnson wrote the original COFF support; Pace Willison did the original support for

encapsulated COFF.

Adam de Boor and Bradley Davis contributed the ISI Optimum V support. Per Bothner,

Noboyuki Hikichi, and Alessandro Forin contributed MIPS support. Jean-Daniel Fekete contributed

Sun 386i support. Chris Hanson improved the HP9000 support. Noboyuki Hikichi and Tomoyuki

Summary of GDB 3

Hasei contributed Sony/News OS 3 support. David Johnson contributed Encore Umax support.

Jyrki Kuoppala contributed Altos 3068 support. Je� Law contributed HP PA and SOM support.

Keith Packard contributed NS32K support. Doug Rabson contributed Acorn Risc Machine sup-

port. Bob Rusk contributed Harris Nighthawk CX-UX support. Chris Smith contributed Convex

support (and Fortran debugging). Jonathan Stone contributed Pyramid support. Michael Tie-

mann contributed SPARC support. Tim Tucker contributed support for the Gould NP1 and Gould

Powernode. Pace Willison contributed Intel 386 support. Jay Vosburgh contributed Symmetry

support.

Rich Schaefer and Peter Schauer helped with support of SunOS shared libraries.

Jay Fenlason and Roland McGrath ensured that GDB and GAS agree about several machine

instruction sets.

Patrick Duval, Ted Goldstein, Vikram Koka and Glenn Engel helped develop remote debug-

ging. Intel Corporation and Wind River Systems contributed remote debugging modules for their

products.

Brian Fox is the author of the readline libraries providing command-line editing and command

history.

Andrew Beers of SUNY Bu�alo wrote the language-switching code, and contributed the Lan-

guages chapter of this manual.

Fred Fish wrote most of the support for Unix System Vr4. He also enhanced the command-

completion support to cover C++ overloaded symbols.

Hitachi America, Ltd. sponsored the support for Hitachi microprocessors.

Kung Hsu, Je� Law, and Rick Sladkey added support for hardware watchpoints.

Stu Grossman wrote gdbserver.

Jim Kingdon, Peter Schauer, Ian Taylor, and Stu Grossman made nearly innumerable bug �xes

and cleanups throughout GDB.

4 Debugging with GDB (HP 9000 Systems)

Chapter 1: A Sample GDB Session 5

1 A SampleGDBSession

You can use this manual at your leisure to read all about GDB. However, a handful of commands

are enough to get started using the debugger. This chapter illustrates those commands.

In this sample session, we emphasize user input like this: input, to make it easier to pick out

from the surrounding output.

One of the preliminary versions of gnu m4 (a generic macro processor) exhibits the following

bug: sometimes, when we change its quote strings from the default, the commands used to capture

one macro de�nition within another stop working. In the following short m4 session, we de�ne a

macro foo which expands to 0000; we then use the m4 built-in defn to de�ne bar as the same

thing. However, when we change the open quote string to <QUOTE> and the close quote string to

<UNQUOTE>, the same procedure fails to de�ne a new synonym baz:

$ cd gnu/m4
$./m4
de�ne(foo,0000)

foo
0000

de�ne(bar,defn(`foo'))

bar
0000

changequote(<QUOTE>,<UNQUOTE>)

de�ne(baz,defn(<QUOTE>foo<UNQUOTE>))
baz
C-d
m4: End of input: 0: fatal error: EOF in string

Let us use GDB to try to see what is going on.

$ gdb m4
Wildebeest is free software and you are welcome to distribute copies of

it under certain conditions; type "show copying" to see the conditions.

There is absolutely no warranty for Wildebeest; type "show warranty"

for details.

Hewlett-Packard Wildebeest 1.0 (based on GDB 4.16)

(built for PA-RISC 1.1 or 2.0, HP-UX 10.20)

Copyright 1996, 1997, 1998, 1999 Free Software Foundation, Inc.

(gdb)

6 Debugging with GDB (HP 9000 Systems)

GDB reads only enough symbol data to know where to �nd the rest when needed; as a result, the

�rst prompt comes up very quickly. We now tell GDB to use a narrower display width than usual,

so that examples �t in this manual.

(gdb) set width 70

We need to see how the m4 built-in changequote works. Having looked at the source, we know

the relevant subroutine is m4_changequote, so we set a breakpoint there with the GDB break

command.

(gdb) break m4 changequote
Breakpoint 1 at 0x62f4: file builtin.c, line 879.

Using the run command, we start m4 running under GDB control; as long as control does not reach

the m4_changequote subroutine, the program runs as usual:

(gdb) run
Starting program: /work/Editorial/gdb/gnu/m4/m4

de�ne(foo,0000)

foo
0000

To trigger the breakpoint, we call changequote. GDB suspends execution of m4, displaying infor-

mation about the context where it stops.

changequote(<QUOTE>,<UNQUOTE>)

Breakpoint 1, m4_changequote (argc=3, argv=0x33c70)

at builtin.c:879

879 if (bad_argc(TOKEN_DATA_TEXT(argv[0]),argc,1,3))

Now we use the command n (next) to advance execution to the next line of the current function.

(gdb) n
882 set_quotes((argc >= 2) ? TOKEN_DATA_TEXT(argv[1])\

: nil,

set_quotes looks like a promising subroutine. We can go into it by using the command s (step)

instead of next. step goes to the next line to be executed in any subroutine, so it steps into

set_quotes.

Chapter 1: A Sample GDB Session 7

(gdb) s
set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")

at input.c:530

530 if (lquote != def_lquote)

The display that shows the subroutine where m4 is now suspended (and its arguments) is called a

stack frame display. It shows a summary of the stack. We can use the backtrace command (which

can also be spelled bt), to see where we are in the stack as a whole: the backtrace command

displays a stack frame for each active subroutine.

(gdb) bt
#0 set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")

at input.c:530

#1 0x6344 in m4_changequote (argc=3, argv=0x33c70)

at builtin.c:882

#2 0x8174 in expand_macro (sym=0x33320) at macro.c:242

#3 0x7a88 in expand_token (obs=0x0, t=209696, td=0xf7fffa30)

at macro.c:71

#4 0x79dc in expand_input () at macro.c:40

#5 0x2930 in main (argc=0, argv=0xf7fffb20) at m4.c:195

We step through a few more lines to see what happens. The �rst two times, we can use `s'; the

next two times we use n to avoid falling into the xstrdup subroutine.

(gdb) s
0x3b5c 532 if (rquote != def_rquote)

(gdb) s
0x3b80 535 lquote = (lq == nil || *lq == '\0') ? \

def_lquote : xstrdup(lq);

(gdb) n
536 rquote = (rq == nil || *rq == '\0') ? def_rquote\

: xstrdup(rq);

(gdb) n
538 len_lquote = strlen(rquote);

The last line displayed looks a little odd; we can examine the variables lquote and rquote to see

if they are in fact the new left and right quotes we speci�ed. We use the command p (print) to

see their values.

(gdb) p lquote
$1 = 0x35d40 "<QUOTE>"

(gdb) p rquote
$2 = 0x35d50 "<UNQUOTE>"

8 Debugging with GDB (HP 9000 Systems)

lquote and rquote are indeed the new left and right quotes. To look at some context, we can

display ten lines of source surrounding the current line with the l (list) command.

(gdb) l
533 xfree(rquote);

534

535 lquote = (lq == nil || *lq == '\0') ? def_lquote\

: xstrdup (lq);

536 rquote = (rq == nil || *rq == '\0') ? def_rquote\

: xstrdup (rq);

537

538 len_lquote = strlen(rquote);

539 len_rquote = strlen(lquote);

540 }

541

542 void

Let us step past the two lines that set len_lquote and len_rquote, and then examine the values

of those variables.

(gdb) n
539 len_rquote = strlen(lquote);

(gdb) n
540 }

(gdb) p len lquote
$3 = 9

(gdb) p len rquote
$4 = 7

That certainly looks wrong, assuming len_lquote and len_rquote are meant to be the lengths

of lquote and rquote respectively. We can set them to better values using the p command, since

it can print the value of any expression|and that expression can include subroutine calls and

assignments.

(gdb) p len lquote=strlen(lquote)
$5 = 7

(gdb) p len rquote=strlen(rquote)
$6 = 9

Is that enough to �x the problem of using the new quotes with the m4 built-in defn? We can allow

m4 to continue executing with the c (continue) command, and then try the example that caused

trouble initially:

(gdb) c

Chapter 1: A Sample GDB Session 9

Continuing.

de�ne(baz,defn(<QUOTE>foo<UNQUOTE>))

baz

0000

Success! The new quotes now work just as well as the default ones. The problem seems to have

been just the two typos de�ning the wrong lengths. We allow m4 exit by giving it an EOF as input:

C-d
Program exited normally.

The message `Program exited normally.' is from GDB; it indicates m4 has �nished executing. We

can end our GDB session with the GDB quit command.

(gdb) quit

10 Debugging with GDB (HP 9000 Systems)

Chapter 2: Getting In and Out of GDB 11

2 Getting In andOut of GDB

This chapter discusses how to start GDB, and how to get out of it. The essentials are:

� type `gdb' to start GDB.

� type quit or C-d to exit.

2.1 Invoking GDB

Invoke GDB by running the program gdb. Once started, GDB reads commands from the

terminal until you tell it to exit.

You can also run gdb with a variety of arguments and options, to specify more of your debugging

environment at the outset.

The most usual way to start GDB is with one argument, specifying an executable program:

gdb program

You can also start with both an executable program and a core �le speci�ed:

gdb program core

You can, instead, specify a process ID as a second argument, if you want to debug a running

process:

gdb program 1234

would attach GDB to process 1234 (unless you also have a �le named `1234'; GDB does check for

a core �le �rst).

You can run gdb without printing the front material, which describes GDB's non-warranty, by

specifying -silent:

gdb -silent

12 Debugging with GDB (HP 9000 Systems)

You can further control how GDB starts up by using command-line options. GDB itself can remind

you of the options available.

Type

gdb -help

to display all available options and brie
y describe their use (`gdb -h' is a shorter equivalent).

All options and command line arguments you give are processed in sequential order. The order

makes a di�erence when the `-x' option is used.

2.1.1 Choosing �les

When GDB starts, it reads any arguments other than options as specifying an executable �le

and core �le (or process ID). This is the same as if the arguments were speci�ed by the `-se' and

`-c' options respectively. (GDB reads the �rst argument that does not have an associated option

ag as equivalent to the `-se' option followed by that argument; and the second argument that

does not have an associated option
ag, if any, as equivalent to the `-c' option followed by that

argument.)

Many options have both long and short forms; both are shown in the following list. GDB also

recognizes the long forms if you truncate them, so long as enough of the option is present to be

unambiguous. (If you prefer, you can
ag option arguments with `--' rather than `-', though we

illustrate the more usual convention.)

-symbols �le

-s �le Read symbol table from �le �le.

-exec �le

-e �le Use �le �le as the executable �le to execute when appropriate, and for examining pure

data in conjunction with a core dump.

-se �le Read symbol table from �le �le and use it as the executable �le.

-core �le

-c �le Use �le �le as a core dump to examine.

Chapter 2: Getting In and Out of GDB 13

-c number

Connect to process ID number, as with the attach command (unless there is a �le in

core-dump format named number, in which case `-c' speci�es that �le as a core dump

to read).

-command �le

-x �le Execute GDB commands from �le �le. See Section 15.3 [Command �les], page 127.

-directory directory

-d directory

Add directory to the path to search for source �les.

2.1.2 Choosing modes

You can run GDB in various alternative modes|for example, in batch mode or quiet mode.

-nx

-n Do not execute commands from any initialization �les (normally called `.gdbinit').

Normally, the commands in these �les are executed after all the command options and

arguments have been processed. See Section 15.3 [Command �les], page 127.

-quiet

-q \Quiet". Do not print the introductory and copyright messages. These messages are

also suppressed in batch mode.

-batch Run in batch mode. Exit with status 0 after processing all the command �les speci�ed

with `-x' (and all commands from initialization �les, if not inhibited with `-n'). Exit

with nonzero status if an error occurs in executing the GDB commands in the command

�les.

Batch mode may be useful for running GDB as a �lter, for example to download and

run a program on another computer; in order to make this more useful, the message

Program exited normally.

(which is ordinarily issued whenever a program running under GDB control terminates)

is not issued when running in batch mode.

-cd directory

Run GDB using directory as its working directory, instead of the current directory.

-fullname

-f gnu Emacs sets this option when it runs GDB as a subprocess. It tells GDB to output

the full �le name and line number in a standard, recognizable fashion each time a stack

frame is displayed (which includes each time your program stops). This recognizable

14 Debugging with GDB (HP 9000 Systems)

format looks like two `\032' characters, followed by the �le name, line number and

character position separated by colons, and a newline. The Emacs-to-GDB interface

program uses the two `\032' characters as a signal to display the source code for the

frame.

-tty device

Run using device for your program's standard input and output.

-tui Use a Terminal User Interface. For information, use your Web browser to read the

�le `TUI.html', which is usually installed in the directory /opt/langtools/wdb/doc

on HP-UX systems. Do not use this option if you run GDB from Emacs (see see

Chapter 16 [Using GDB under gnu Emacs], page 131).

-xdb Run in XDB compatibility mode, allowing the use of certain XDB commands. For

information, see the �le `xdb_trans.html', which is usually installed in the directory

/opt/langtools/wdb/doc on HP-UX systems.

2.2 Quitting GDB

quit To exit GDB, use the quit command (abbreviated q), or type an end-of-�le character

(usually C-d). If you do not supply expression, GDB will terminate normally; otherwise

it will terminate using the result of expression as the error code.

An interrupt (often C-c) does not exit from GDB, but rather terminates the action of any GDB

command that is in progress and returns to GDB command level. It is safe to type the interrupt

character at any time because GDB does not allow it to take e�ect until a time when it is safe.

If you have been using GDB to control an attached process or device, you can release it with

the detach command (see Section 4.7 [Debugging an already-running process], page 28).

2.3 Shell commands

If you need to execute occasional shell commands during your debugging session, there is no

need to leave or suspend GDB; you can just use the shell command.

shell command string

Invoke a standard shell to execute command string. GDB uses the C shell (/usr/bin/csh).

Chapter 2: Getting In and Out of GDB 15

The utility make is often needed in development environments. You do not have to use the

shell command for this purpose in GDB:

make make-args

Execute the make program with the speci�ed arguments. This is equivalent to `shell

make make-args'.

16 Debugging with GDB (HP 9000 Systems)

Chapter 3: GDB Commands 17

3 GDBCommands

You can abbreviate a GDB command to the �rst few letters of the command name, if that

abbreviation is unambiguous; and you can repeat certain GDB commands by typing just RET. You

can also use the TAB key to get GDB to �ll out the rest of a word in a command (or to show you

the alternatives available, if there is more than one possibility).

3.1 Command syntax

A GDB command is a single line of input. There is no limit on how long it can be. It starts

with a command name, which is followed by arguments whose meaning depends on the command

name. For example, the command step accepts an argument which is the number of times to step,

as in `step 5'. You can also use the step command with no arguments. Some command names do

not allow any arguments.

GDB command names may always be truncated if that abbreviation is unambiguous. Other

possible command abbreviations are listed in the documentation for individual commands. In some

cases, even ambiguous abbreviations are allowed; for example, s is specially de�ned as equivalent to

step even though there are other commands whose names start with s. You can test abbreviations

by using them as arguments to the help command.

A blank line as input to GDB (typing just RET) means to repeat the previous command. Certain

commands (for example, run) will not repeat this way; these are commands whose unintentional

repetition might cause trouble and which you are unlikely to want to repeat.

The list and x commands, when you repeat them with RET, construct new arguments rather

than repeating exactly as typed. This permits easy scanning of source or memory.

GDB can also use RET in another way: to partition lengthy output, in a way similar to the

common utility more (see Section 14.4 [Screen size], page 121). Since it is easy to press one RET

too many in this situation, GDB disables command repetition after any command that generates

this sort of display.

Any text from a # to the end of the line is a comment; it does nothing. This is useful mainly in

command �les (see Section 15.3 [Command �les], page 127).

18 Debugging with GDB (HP 9000 Systems)

3.2 Command completion

GDB can �ll in the rest of a word in a command for you, if there is only one possibility; it can

also show you what the valid possibilities are for the next word in a command, at any time. This

works for GDB commands, GDB subcommands, and the names of symbols in your program.

Press the TAB key whenever you want GDB to �ll out the rest of a word. If there is only one

possibility, GDB �lls in the word, and waits for you to �nish the command (or press RET to enter

it). For example, if you type

(gdb) info bre TAB

GDB �lls in the rest of the word `breakpoints', since that is the only info subcommand beginning

with `bre':

(gdb) info breakpoints

You can either press RET at this point, to run the info breakpoints command, or backspace and

enter something else, if `breakpoints' does not look like the command you expected. (If you were

sure you wanted info breakpoints in the �rst place, you might as well just type RET immediately

after `info bre', to exploit command abbreviations rather than command completion).

If there is more than one possibility for the next word when you press TAB, GDB sounds a bell.

You can either supply more characters and try again, or just press TAB a second time; GDB displays

all the possible completions for that word. For example, you might want to set a breakpoint on

a subroutine whose name begins with `make_', but when you type b make_TAB GDB just sounds

the bell. Typing TAB again displays all the function names in your program that begin with those

characters, for example:

(gdb) b make_ TAB

GDB sounds bell; press TAB again, to see:
make_a_section_from_file make_environ

make_abs_section make_function_type

make_blockvector make_pointer_type

make_cleanup make_reference_type

make_command make_symbol_completion_list

(gdb) b make_

After displaying the available possibilities, GDB copies your partial input (`b make_' in the example)

so you can �nish the command.

Chapter 3: GDB Commands 19

If you just want to see the list of alternatives in the �rst place, you can press M-? rather than

pressing TAB twice. M-? means META ?. You can type this either by holding down a key designated

as the META shift on your keyboard (if there is one) while typing ?, or as ESC followed by ?.

Sometimes the string you need, while logically a \word", may contain parentheses or other

characters that GDB normally excludes from its notion of a word. To permit word completion to

work in this situation, you may enclose words in ' (single quote marks) in GDB commands.

The most likely situation where you might need this is in typing the name of a C++ function. This

is because C++ allows function overloading (multiple de�nitions of the same function, distinguished

by argument type). For example, when you want to set a breakpoint you may need to distinguish

whether you mean the version of name that takes an int parameter, name(int), or the version that

takes a float parameter, name(float). To use the word-completion facilities in this situation,

type a single quote ' at the beginning of the function name. This alerts GDB that it may need to

consider more information than usual when you press TAB or M-? to request word completion:

(gdb) b 'bubble(M-?

bubble(double,double) bubble(int,int)

(gdb) b 'bubble(

In some cases, GDB can tell that completing a name requires using quotes. When this happens,

GDB inserts the quote for you (while completing as much as it can) if you do not type the quote

in the �rst place:

(gdb) b bub TAB

GDB alters your input line to the following, and rings a bell:
(gdb) b 'bubble(

In general, GDB can tell that a quote is needed (and inserts it) if you have not yet started typing

the argument list when you ask for completion on an overloaded symbol.

For more information about overloaded functions, see Section 9.3.3 [C++ expressions], page 92.

You can use the command set overload-resolution off to disable overload resolution; see Sec-

tion 9.3.6 [GDB features for C++], page 94.

3.3 Getting help

You can always ask GDB itself for information on its commands, using the command help.

20 Debugging with GDB (HP 9000 Systems)

help

h You can use help (abbreviated h) with no arguments to display a short list of named

classes of commands:

(gdb) help

List of classes of commands:

running -- Running the program

stack -- Examining the stack

data -- Examining data

breakpoints -- Making program stop at certain points

files -- Specifying and examining files

status -- Status inquiries

support -- Support facilities

user-defined -- User-defined commands

aliases -- Aliases of other commands

obscure -- Obscure features

Type "help" followed by a class name for a list of

commands in that class.

Type "help" followed by command name for full

documentation.

Command name abbreviations are allowed if unambiguous.

(gdb)

help class Using one of the general help classes as an argument, you can get a list of the individual

commands in that class. For example, here is the help display for the class status:

(gdb) help status

Status inquiries.

List of commands:

show -- Generic command for showing things set

with "set"

info -- Generic command for printing status

Type "help" followed by command name for full

documentation.

Command name abbreviations are allowed if unambiguous.

(gdb)

help command

With a command name as help argument, GDB displays a short paragraph on how to

use that command.

complete args

The complete args command lists all the possible completions for the beginning of a

command. Use args to specify the beginning of the command you want completed. For

example:

complete i

Chapter 3: GDB Commands 21

results in:

info

inspect

ignore

This is intended for use by gnu Emacs.

In addition to help, you can use the GDB commands info and show to inquire about the state

of your program, or the state of GDB itself. Each command supports many topics of inquiry; this

manual introduces each of them in the appropriate context. The listings under info and under

show in the Index point to all the sub-commands. See [Index], page 157.

info This command (abbreviated i) is for describing the state of your program. For example,

you can list the arguments given to your program with info args, list the registers

currently in use with info registers, or list the breakpoints you have set with info

breakpoints. You can get a complete list of the info sub-commands with help info.

set You can assign the result of an expression to an environment variable with set. For

example, you can set the GDB prompt to a $-sign with set prompt $.

show In contrast to info, show is for describing the state of GDB itself. You can change

most of the things you can show, by using the related command set; for example, you

can control what number system is used for displays with set radix, or simply inquire

which is currently in use with show radix.

To display all the settable parameters and their current values, you can use show with

no arguments; you may also use info set. Both commands produce the same display.

Here are three miscellaneous show subcommands, all of which are exceptional in lacking corre-

sponding set commands:

show version

Show what version of GDB is running. You should include this information in GDB

bug-reports. If multiple versions of GDB are in use at your site, you may occasion-

ally want to determine which version of GDB you are running; as GDB evolves, new

commands are introduced, and old ones may wither away. The version number is also

announced when you start GDB.

show copying

Display information about permission for copying GDB.

show warranty

Display the gnu \NO WARRANTY" statement.

22 Debugging with GDB (HP 9000 Systems)

Chapter 4: Running Programs Under GDB 23

4 Running ProgramsUnderGDB

When you run a program under GDB, you must �rst generate debugging information when you

compile it. You may start GDB with its arguments, if any, in an environment of your choice. You

may redirect your program's input and output, debug an already running process, or kill a child

process.

4.1 Compiling for debugging

In order to debug a program e�ectively, you need to generate debugging information when you

compile it. This debugging information is stored in the object �le; it describes the data type of

each variable or function and the correspondence between source line numbers and addresses in the

executable code.

To request debugging information, specify the `-g' option when you run the compiler.

Many C compilers are unable to handle the `-g' and `-O' options together. Using those compilers,

you cannot generate optimized executables containing debugging information.

The HP ANSI C and C++ compilers, as well as GCC, the gnu C compiler, support `-g' with or

without `-O', making it possible to debug optimized code. We recommend that you always use `-g'

whenever you compile a program. You may think your program is correct, but there is no sense in

pushing your luck.

When you debug a program compiled with `-g -O', remember that the optimizer is rearranging

your code; the debugger shows you what is really there. Do not be too surprised when the execution

path does not exactly match your source �le! An extreme example: if you de�ne a variable, but

never use it, GDB never sees that variable|because the compiler optimizes it out of existence.

Some things do not work as well with `-g -O' as with just `-g', particularly on machines with

instruction scheduling. If in doubt, recompile with `-g' alone, and if this �xes the problem, please

report it to us as a bug (including a test case!).

Older versions of the gnu C compiler permitted a variant option `-gg' for debugging information.

GDB no longer supports this format; if your gnu C compiler has this option, do not use it.

24 Debugging with GDB (HP 9000 Systems)

4.2 Starting your program

run

r Use the run command to start your program under GDB. You must �rst specify the

program name with an argument to GDB (see Chapter 2 [Getting In and Out of GDB],

page 11), or by using the file or exec-file command (see Section 12.1 [Commands

to specify �les], page 109).

If you are running your program in an execution environment that supports processes, run

creates an inferior process and makes that process run your program. (In environments without

processes, run jumps to the start of your program.)

The execution of a program is a�ected by certain information it receives from its superior. GDB

provides ways to specify this information, which you must do before starting your program. (You

can change it after starting your program, but such changes only a�ect your program the next time

you start it.) This information may be divided into four categories:

The arguments.

Specify the arguments to give your program as the arguments of the run command.

If a shell is available on your target, the shell is used to pass the arguments, so that

you may use normal conventions (such as wildcard expansion or variable substitution)

in describing the arguments. GDB uses the C shell (/usr/bin/csh). See Section 4.3

[Your program's arguments], page 25.

The environment.

Your program normally inherits its environment from GDB, but you can use the GDB

commands set environment and unset environment to change parts of the environ-

ment that a�ect your program. See Section 4.4 [Your program's environment], page 25.

The working directory.

Your program inherits its working directory from GDB. You can set the GDB working

directory with the cd command in GDB. See Section 4.5 [Your program's working

directory], page 26.

The standard input and output.

Your program normally uses the same device for standard input and standard output

as GDB is using. You can redirect input and output in the run command line, or you

Chapter 4: Running Programs Under GDB 25

can use the tty command to set a di�erent device for your program. See Section 4.6

[Your program's input and output], page 27.

Warning: While input and output redirection work, you cannot use pipes to pass the

output of the program you are debugging to another program; if you attempt this,

GDB is likely to wind up debugging the wrong program.

When you issue the run command, your program begins to execute immediately. See Chapter 5

[Stopping and continuing], page 33, for discussion of how to arrange for your program to stop.

Once your program has stopped, you may call functions in your program, using the print or call

commands. See Chapter 8 [Examining Data], page 67.

If the modi�cation time of your symbol �le has changed since the last time GDB read its symbols,

GDB discards its symbol table, and reads it again. When it does this, GDB tries to retain your

current breakpoints.

4.3 Your program's arguments

The arguments to your program can be speci�ed by the arguments of the run command. They

are passed to the C shell (/usr/bin/csh), which expands wildcard characters and performs redi-

rection of I/O, and thence to your program.

run with no arguments uses the same arguments used by the previous run, or those set by the

set args command.

set args Specify the arguments to be used the next time your program is run. If set args has

no arguments, run executes your program with no arguments. Once you have run your

program with arguments, using set args before the next run is the only way to run it

again without arguments.

show args Show the arguments to give your program when it is started.

4.4 Your program's environment

The environment consists of a set of environment variables and their values. Environment

variables conventionally record such things as your user name, your home directory, your terminal

type, and your search path for programs to run. Usually you set up environment variables with the

26 Debugging with GDB (HP 9000 Systems)

shell and they are inherited by all the other programs you run. When debugging, it can be useful

to try running your program with a modi�ed environment without having to start GDB over again.

path directory

Add directory to the front of the PATH environment variable (the search path for exe-

cutables), for both GDB and your program. You may specify several directory names,

separated by `:' or whitespace. If directory is already in the path, it is moved to the

front, so it is searched sooner.

You can use the string `$cwd' to refer to whatever is the current working directory at

the time GDB searches the path. If you use `.' instead, it refers to the directory where

you executed the path command. GDB replaces `.' in the directory argument (with

the current path) before adding directory to the search path.

show paths

Display the list of search paths for executables (the PATH environment variable).

show environment [varname]

Print the value of environment variable varname to be given to your program when it

starts. If you do not supply varname, print the names and values of all environment

variables to be given to your program. You can abbreviate environment as env.

set environment varname [=] value

Set environment variable varname to value. The value changes for your program only,

not for GDB itself. value may be any string; the values of environment variables are just

strings, and any interpretation is supplied by your program itself. The value parameter

is optional; if it is eliminated, the variable is set to a null value.

For example, this command:

set env USER = foo

tells a Unix program, when subsequently run, that its user is named `foo'. (The spaces

around `=' are used for clarity here; they are not actually required.)

unset environment varname

Remove variable varname from the environment to be passed to your program. This

is di�erent from `set env varname ='; unset environment removes the variable from

the environment, rather than assigning it an empty value.

4.5 Your program's working directory

Each time you start your program with run, it inherits its working directory from the current

working directory of GDB. The GDB working directory is initially whatever it inherited from its

Chapter 4: Running Programs Under GDB 27

parent process (typically the shell), but you can specify a new working directory in GDB with the

cd command.

The GDB working directory also serves as a default for the commands that specify �les for GDB

to operate on. See Section 12.1 [Commands to specify �les], page 109.

cd directory

Set the GDB working directory to directory.

pwd Print the GDB working directory.

4.6 Your program's input and output

By default, the program you run under GDB does input and output to the same terminal that

GDB uses. GDB switches the terminal to its own terminal modes to interact with you, but it

records the terminal modes your program was using and switches back to them when you continue

running your program.

info terminal

Displays information recorded by GDB about the terminal modes your program is

using.

You can redirect your program's input and/or output using shell redirection with the run com-

mand. For example,

run > outfile

starts your program, diverting its output to the �le `outfile'.

Another way to specify where your program should do input and output is with the tty com-

mand. This command accepts a �le name as argument, and causes this �le to be the default for

future run commands. It also resets the controlling terminal for the child process, for future run

commands. For example,

tty /dev/ttyb

directs that processes started with subsequent run commands default to do input and output on

the terminal `/dev/ttyb' and have that as their controlling terminal.

28 Debugging with GDB (HP 9000 Systems)

An explicit redirection in run overrides the tty command's e�ect on the input/output device,

but not its e�ect on the controlling terminal.

When you use the tty command or redirect input in the run command, only the input for your

program is a�ected. The input for GDB still comes from your terminal.

4.7 Debugging an already-running process

attach process-id

This command attaches to a running process|one that was started outside GDB.

(info files shows your active targets.) The command takes as argument a process

ID. The usual way to �nd out the process-id of a Unix process is with the ps utility,

or with the `jobs -l' shell command.

attach does not repeat if you press RET a second time after executing the command.

To use attach, your program must be running in an environment which supports processes; for

example, attach does not work for programs on bare-board targets that lack an operating system.

You must also have permission to send the process a signal.

When you use attach, the debugger �nds the program running in the process �rst by looking

in the current working directory, then (if the program is not found) by using the source �le search

path (see Section 7.3 [Specifying source directories], page 61). You can also use the file command

to load the program. See Section 12.1 [Commands to Specify Files], page 109.

The �rst thing GDB does after arranging to debug the speci�ed process is to stop it. You can

examine and modify an attached process with all the GDB commands that are ordinarily available

when you start processes with run. You can insert breakpoints (except in shared libraries); you

can step and continue; you can modify storage. If you would rather the process continue running,

you may use the continue command after attaching GDB to the process.

detach When you have �nished debugging the attached process, you can use the detach com-

mand to release it from GDB control. Detaching the process continues its execution.

After the detach command, that process and GDB become completely independent

once more, and you are ready to attach another process or start one with run. detach

does not repeat if you press RET again after executing the command.

Chapter 4: Running Programs Under GDB 29

If you exit GDB or use the run command while you have an attached process, you kill that

process. By default, GDB asks for con�rmation if you try to do either of these things; you can

control whether or not you need to con�rm by using the set confirm command (see Section 14.6

[Optional warnings and messages], page 123).

4.8 Killing the child process

kill Kill the child process in which your program is running under GDB.

This command is useful if you wish to debug a core dump instead of a running process. GDB

ignores any core dump �le while your program is running.

On some operating systems, a program cannot be executed outside GDB while you have break-

points set on it inside GDB. You can use the kill command in this situation to permit running

your program outside the debugger.

The kill command is also useful if you wish to recompile and relink your program, since on

many systems it is impossible to modify an executable �le while it is running in a process. In this

case, when you next type run, GDB notices that the �le has changed, and reads the symbol table

again (while trying to preserve your current breakpoint settings).

4.9 Debugging programs with multiple threads

In some operating systems, including HP-UX, a single program may have more than one thread

of execution. The precise semantics of threads di�er from one operating system to another, but in

general the threads of a single program are akin to multiple processes|except that they share one

address space (that is, they can all examine and modify the same variables). On the other hand,

each thread has its own registers and execution stack, and perhaps private memory.

GDB, on HP-UX 11.0 and later, provides these facilities for debugging multi-thread programs:

� automatic noti�cation of new threads

� `thread threadno', a command to switch among threads

� `info threads', a command to inquire about existing threads

� `thread apply [threadno] [all] args', a command to apply a command to a list of threads

30 Debugging with GDB (HP 9000 Systems)

� thread-speci�c breakpoints

The GDB thread debugging facility allows you to observe all threads while your program runs|

but whenever GDB takes control, one thread in particular is always the focus of debugging. This

thread is called the current thread. Debugging commands show program information from the

perspective of the current thread.

For debugging purposes, GDB associates its own thread number|a small integer assigned in

thread-creation order|with each thread in your program.

Whenever GDB detects a new thread in your program, it displays both GDB's thread number

and the target system's identi�cation for the thread with a message in the form `[New systag]'.

systag is a thread identi�er whose form varies depending on the particular system. For example,

on HP-UX, you see

[New thread 2 (system thread 26594)]

when GDB notices a new thread.

info threads

Display a summary of all threads currently in your program. GDB displays for each

thread (in this order):

1. the thread number assigned by GDB

2. the target system's thread identi�er (systag)

3. the current stack frame summary for that thread

An asterisk `*' to the left of the GDB thread number indicates the current thread.

For example,

(gdb) info threads

* 3 system thread 26607 worker (wptr=0x7b09c318 "@") at quicksort.c:137

2 system thread 26606 0x7b0030d8 in __ksleep () from /usr/lib/libc.2

1 system thread 27905 0x7b003498 in _brk () from /usr/lib/libc.2

thread threadno

Make thread number threadno the current thread. The command argument threadno

is the internal GDB thread number, as shown in the �rst �eld of the `info threads'

display. GDB responds by displaying the system identi�er of the thread you selected,

and its current stack frame summary:

Chapter 4: Running Programs Under GDB 31

(gdb) thread 2

[Switching to thread 2 (system thread 26594)]

0x34e5 in sigpause ()

As with the `[New . . .]' message, the form of the text after `Switching to' depends

on your system's conventions for identifying threads.

thread apply [threadno] [all] args

The thread apply command allows you to apply a command to one or more threads.

Specify the numbers of the threads that you want a�ected with the command argument

threadno. threadno is the internal GDB thread number, as shown in the �rst �eld of

the `info threads' display. To apply a command to all threads, use thread apply all

args.

Whenever GDB stops your program, due to a breakpoint or a signal, it automatically selects

the thread where that breakpoint or signal happened. GDB alerts you to the context switch with

a message of the form `[Switching to systag]' to identify the thread.

See Section 5.5 [Stopping and starting multi-thread programs], page 51, for more information

about how GDB behaves when you stop and start programs with multiple threads.

See Section 5.1.2 [Setting watchpoints], page 37, for information about watchpoints in programs

with multiple threads.

4.10 Debugging programs with multiple processes

GDB provides support for debugging programs that create additional processes using the fork

or vfork function.

By default, when a program forks, GDB will continue to debug the parent process and the child

process will run unimpeded.

If you want to follow the child process instead of the parent process, use the command

set follow-fork-mode.

set follow-fork-mode mode

Set the debugger response to a program call of fork or vfork. A call to fork or vfork

creates a new process. The mode can be:

32 Debugging with GDB (HP 9000 Systems)

parent The original process is debugged after a fork. The child process runs unim-

peded.

child The new process is debugged after a fork. The parent process runs unim-

peded.

ask The debugger will ask for one of the above choices.

show follow-fork-mode

Display the current debugger response to a fork or vfork call.

If you ask to debug a child process and a vfork is followed by an exec, GDB executes the new

target up to the �rst breakpoint in the new target. If you have a breakpoint set on main in your

original program, the breakpoint will also be set on the child process's main.

When a child process is spawned by vfork, you cannot debug the child or parent until an exec

call completes.

If you issue a run command to GDB after an exec call executes, the new target restarts. To

restart the parent process, use the file command with the parent executable name as its argument.

You can use the catch command to make GDB stop whenever a fork, vfork, or exec call is

made. See Section 5.1.3 [Setting catchpoints], page 38.

Chapter 5: Stopping and Continuing 33

5 Stopping andContinuing

The principal purposes of using a debugger are so that you can stop your program before it

terminates; or so that, if your program runs into trouble, you can investigate and �nd out why.

Inside GDB, your program may stop for any of several reasons, such as a signal, a breakpoint,

or reaching a new line after a GDB command such as step. You may then examine and change

variables, set new breakpoints or remove old ones, and then continue execution. Usually, the

messages shown by GDB provide ample explanation of the status of your program|but you can

also explicitly request this information at any time.

info program

Display information about the status of your program: whether it is running or not,

what process it is, and why it stopped.

5.1 Breakpoints, watchpoints, and catchpoints

A breakpoint makes your program stop whenever a certain point in the program is reached.

For each breakpoint, you can add conditions to control in �ner detail whether your program stops.

You can set breakpoints with the break command and its variants (see Section 5.1.1 [Setting

breakpoints], page 34), to specify the place where your program should stop by line number,

function name or exact address in the program.

In HP-UX, SunOS 4.x, SVR4, and Alpha OSF/1 con�gurations, you can set breakpoints in

shared libraries before the executable is run.

A watchpoint is a special breakpoint that stops your program when the value of an expression

changes. You must use a di�erent command to set watchpoints (see Section 5.1.2 [Setting watch-

points], page 37), but aside from that, you can manage a watchpoint like any other breakpoint:

you enable, disable, and delete both breakpoints and watchpoints using the same commands.

You can arrange to have values from your program displayed automatically whenever GDB stops

at a breakpoint. See Section 8.6 [Automatic display], page 74.

A catchpoint is another special breakpoint that stops your program when a certain kind of event

occurs, such as the throwing of a C++ exception or the loading of a library. As with watchpoints,

34 Debugging with GDB (HP 9000 Systems)

you use a di�erent command to set a catchpoint (see Section 5.1.3 [Setting catchpoints], page 38),

but aside from that, you can manage a catchpoint like any other breakpoint. (To stop when your

program receives a signal, use the handle command; see Section 5.3 [Signals], page 48.)

GDB assigns a number to each breakpoint, watchpoint, or catchpoint when you create it; these

numbers are successive integers starting with one. In many of the commands for controlling various

features of breakpoints you use the breakpoint number to say which breakpoint you want to change.

Each breakpoint may be enabled or disabled; if disabled, it has no e�ect on your program until

you enable it again.

5.1.1 Setting breakpoints

Breakpoints are set with the break command (abbreviated b). The debugger convenience vari-

able `$bpnum' records the number of the breakpoints you've set most recently; see Section 8.9

[Convenience variables], page 82, for a discussion of what you can do with convenience variables.

You have several ways to say where the breakpoint should go.

break function

Set a breakpoint at entry to function function. When using source languages that

permit overloading of symbols, such as C++, function may refer to more than one

possible place to break. See Section 5.1.8 [Breakpoint menus], page 44, for a discussion

of that situation.

break +o�set

break -o�set

Set a breakpoint some number of lines forward or back from the position at which

execution stopped in the currently selected frame.

break linenum

Set a breakpoint at line linenum in the current source �le. That �le is the last �le whose

source text was printed. This breakpoint stops your program just before it executes

any of the code on that line.

break �lename:linenum

Set a breakpoint at line linenum in source �le �lename.

break �lename:function

Set a breakpoint at entry to function function found in �le �lename. Specifying a

�le name as well as a function name is super
uous except when multiple �les contain

similarly named functions.

Chapter 5: Stopping and Continuing 35

break *address

Set a breakpoint at address address. You can use this to set breakpoints in parts of

your program which do not have debugging information or source �les.

break When called without any arguments, break sets a breakpoint at the next instruction to

be executed in the selected stack frame (see Chapter 6 [Examining the Stack], page 53).

In any selected frame but the innermost, this makes your program stop as soon as

control returns to that frame. This is similar to the e�ect of a finish command

in the frame inside the selected frame|except that finish does not leave an active

breakpoint. If you use break without an argument in the innermost frame, GDB stops

the next time it reaches the current location; this may be useful inside loops.

GDB normally ignores breakpoints when it resumes execution, until at least one in-

struction has been executed. If it did not do this, you would be unable to proceed past

a breakpoint without �rst disabling the breakpoint. This rule applies whether or not

the breakpoint already existed when your program stopped.

break . . . if cond

Set a breakpoint with condition cond; evaluate the expression cond each time the

breakpoint is reached, and stop only if the value is nonzero|that is, if cond evaluates as

true. `. . .' stands for one of the possible arguments described above (or no argument)

specifying where to break. See Section 5.1.6 [Break conditions], page 41, for more

information on breakpoint conditions.

tbreak args

Set a breakpoint enabled only for one stop. args are the same as for the break com-

mand, and the breakpoint is set in the same way, but the breakpoint is automatically

deleted after the �rst time your program stops there. See Section 5.1.5 [Disabling

breakpoints], page 40.

rbreak regex

Set breakpoints on all functions matching the regular expression regex. This command

sets an unconditional breakpoint on all matches, printing a list of all breakpoints it set.

Once these breakpoints are set, they are treated just like the breakpoints set with the

break command. You can delete them, disable them, or make them conditional the

same way as any other breakpoint.

When debugging C++ programs, rbreak is useful for setting breakpoints on overloaded

functions that are not members of any special classes.

info breakpoints [n]

info break [n]

info watchpoints [n]

Print a table of all breakpoints, watchpoints, and catchpoints set and not deleted, with

the following columns for each breakpoint:

36 Debugging with GDB (HP 9000 Systems)

Breakpoint Numbers

Type Breakpoint, watchpoint, or catchpoint.

Disposition

Whether the breakpoint is marked to be disabled or deleted when hit.

Enabled or Disabled

Enabled breakpoints are marked with `y'. `n' marks breakpoints that are

not enabled.

Address Where the breakpoint is in your program, as a memory address

What Where the breakpoint is in the source for your program, as a �le and line

number.

If a breakpoint is conditional, info break shows the condition on the line following the

a�ected breakpoint; breakpoint commands, if any, are listed after that.

info break with a breakpoint number n as argument lists only that breakpoint. The

convenience variable $_ and the default examining-address for the x command are set to

the address of the last breakpoint listed (see Section 8.5 [Examining memory], page 72).

info break displays a count of the number of times the breakpoint has been hit. This

is especially useful in conjunction with the ignore command. You can ignore a large

number of breakpoint hits, look at the breakpoint info to see how many times the

breakpoint was hit, and then run again, ignoring one less than that number. This will

get you quickly to the last hit of that breakpoint.

GDB allows you to set any number of breakpoints at the same place in your program. There is

nothing silly or meaningless about this. When the breakpoints are conditional, this is even useful

(see Section 5.1.6 [Break conditions], page 41).

GDB itself sometimes sets breakpoints in your program for special purposes, such as proper

handling of longjmp (in C programs). These internal breakpoints are assigned negative numbers,

starting with -1; `info breakpoints' does not display them.

You can see these breakpoints with the GDB maintenance command `maint info breakpoints'.

maint info breakpoints

Using the same format as `info breakpoints', display both the breakpoints you've

set explicitly, and those GDB is using for internal purposes. Internal breakpoints are

shown with negative breakpoint numbers. The type column identi�es what kind of

breakpoint is shown:

Chapter 5: Stopping and Continuing 37

breakpoint

Normal, explicitly set breakpoint.

watchpoint

Normal, explicitly set watchpoint.

longjmp Internal breakpoint, used to handle correctly stepping through longjmp

calls.

longjmp resume

Internal breakpoint at the target of a longjmp.

until Temporary internal breakpoint used by the GDB until command.

finish Temporary internal breakpoint used by the GDB finish command.

shlib events

Shared library events.

5.1.2 Setting watchpoints

You can use a watchpoint to stop execution whenever the value of an expression changes, without

having to predict a particular place where this may happen.

watch expr

Set a watchpoint for an expression. GDB will break when expr is written into by the

program and its value changes.

info watchpoints

This command prints a list of watchpoints, breakpoints, and catchpoints; it is the same

as info break.

GDB sets a hardware watchpoint if possible. Hardware watchpoints execute very quickly, and

the debugger reports a change in value at the exact instruction where the change occurs. If GDB

cannot set a hardware watchpoint, it sets a software watchpoint, which executes more slowly and

reports the change in value at the next statement, not the instruction, after the change occurs.

When you issue the watch command, GDB reports

Hardware watchpoint num: expr

if it was able to set a hardware watchpoint.

38 Debugging with GDB (HP 9000 Systems)

If you call a function interactively using print or call, any watchpoints you have set will be

inactive until GDB reaches another kind of breakpoint or the call completes.

Warning: In multi-thread programs, software watchpoints have only limited usefulness.
If GDB creates a software watchpoint, it can only watch the value of an expression
in a single thread. If you are con�dent that the expression can only change due to
the current thread's activity (and if you are also con�dent that no other thread can
become current), then you can use software watchpoints as usual. However, GDB may
not notice when a non-current thread's activity changes the expression. (Hardware
watchpoints, in contrast, watch an expression in all threads.)

5.1.3 Setting catchpoints

You can use catchpoints to cause the debugger to stop for certain kinds of program events, such

as C++ exceptions or the loading of a shared library. Use the catch command to set a catchpoint.

catch event

Stop when event occurs. event can be any of the following:

throw The throwing of a C++ exception.

catch The catching of a C++ exception.

exec A call to exec.

fork A call to fork.

vfork A call to vfork.

load

load libname

The dynamic loading of any shared library, or the loading of the library

libname.

unload

unload path/libname

The unloading of any dynamically loaded shared library, or the unloading

of the library path/libname. Note that you need to specify the full path

name of the library.

tcatch event

Set a catchpoint that is enabled only for one stop. The catchpoint is automatically

deleted after the �rst time the event is caught.

Use the info break command to list the current catchpoints.

Chapter 5: Stopping and Continuing 39

There are currently some limitations to C++ exception handling (catch throw and catch catch)

in GDB:

� If you call a function interactively, GDB normally returns control to you when the function has

�nished executing. If the call raises an exception, however, the call may bypass the mechanism

that returns control to you and cause your program either to abort or to simply continue

running until it hits a breakpoint, catches a signal that GDB is listening for, or exits. This is

the case even if you set a catchpoint for the exception; catchpoints on exceptions are disabled

within interactive calls.

� You cannot raise an exception interactively.

� You cannot install an exception handler interactively.

5.1.4 Deleting breakpoints

It is often necessary to eliminate a breakpoint, watchpoint, or catchpoint once it has done its

job and you no longer want your program to stop there. This is called deleting the breakpoint. A

breakpoint that has been deleted no longer exists; it is forgotten.

With the clear command you can delete breakpoints according to where they are in your

program. With the delete command you can delete individual breakpoints, watchpoints, or catch-

points by specifying their breakpoint numbers.

It is not necessary to delete a breakpoint to proceed past it. GDB automatically ignores break-

points on the �rst instruction to be executed when you continue execution without changing the

execution address.

clear Delete any breakpoints at the next instruction to be executed in the selected stack

frame (see Section 6.3 [Selecting a frame], page 55). When the innermost frame is

selected, this is a good way to delete a breakpoint where your program just stopped.

clear function

clear �lename:function

Delete any breakpoints set at entry to the function function.

clear linenum

clear �lename:linenum

Delete any breakpoints set at or within the code of the speci�ed line.

40 Debugging with GDB (HP 9000 Systems)

delete [breakpoints] [bnums. . .]

Delete the breakpoints, watchpoints, or catchpoints of the numbers speci�ed as argu-

ments. If no argument is speci�ed, delete all breakpoints (GDB asks con�rmation,

unless you have set confirm off). You can abbreviate this command as d.

5.1.5 Disabling breakpoints

Rather than deleting a breakpoint, watchpoint, or catchpoint, you might prefer to disable it.

This makes the breakpoint inoperative as if it had been deleted, but remembers the information

on the breakpoint so that you can enable it again later.

You disable and enable breakpoints, watchpoints, and catchpoints with the enable and disable

commands, optionally specifying one or more breakpoint numbers as arguments. Use info break

or info watch to print a list of breakpoints, watchpoints, and catchpoints if you do not know which

numbers to use.

A breakpoint, watchpoint, or catchpoint can have any of four di�erent states of enablement:

� Enabled. The breakpoint stops your program. A breakpoint set with the break command

starts out in this state.

� Disabled. The breakpoint has no e�ect on your program.

� Enabled once. The breakpoint stops your program, but then becomes disabled. A breakpoint

set with the tbreak command starts out in this state.

� Enabled for deletion. The breakpoint stops your program, but immediately after it does so it

is deleted permanently.

You can use the following commands to enable or disable breakpoints, watchpoints, and catch-

points:

disable [breakpoints] [bnums. . .]

Disable the speci�ed breakpoints|or all breakpoints, if none are listed. A disabled

breakpoint has no e�ect but is not forgotten. All options such as ignore-counts, con-

ditions and commands are remembered in case the breakpoint is enabled again later.

You may abbreviate disable as dis.

enable [breakpoints] [bnums. . .]

Enable the speci�ed breakpoints (or all de�ned breakpoints). They become e�ective

once again in stopping your program.

Chapter 5: Stopping and Continuing 41

enable [breakpoints] once bnums. . .

Enable the speci�ed breakpoints temporarily. GDB disables any of these breakpoints

immediately after stopping your program.

enable [breakpoints] delete bnums. . .

Enable the speci�ed breakpoints to work once, then die. GDB deletes any of these

breakpoints as soon as your program stops there.

Except for a breakpoint set with tbreak (see Section 5.1.1 [Setting breakpoints], page 34),

breakpoints that you set are initially enabled; subsequently, they become disabled or enabled only

when you use one of the commands above. (The command until can set and delete a breakpoint

of its own, but it does not change the state of your other breakpoints; see Section 5.2 [Continuing

and stepping], page 45.)

5.1.6 Break conditions

The simplest sort of breakpoint breaks every time your program reaches a speci�ed place. You

can also specify a condition for a breakpoint. A condition is just a Boolean expression in your

programming language (see Section 8.1 [Expressions], page 67). A breakpoint with a condition

evaluates the expression each time your program reaches it, and your program stops only if the

condition is true.

This is the converse of using assertions for program validation; in that situation, you want to

stop when the assertion is violated|that is, when the condition is false. In C, if you want to

test an assertion expressed by the condition assert, you should set the condition `! assert' on the

appropriate breakpoint.

Conditions are also accepted for watchpoints; you may not need them, since a watchpoint is

inspecting the value of an expression anyhow|but it might be simpler, say, to just set a watchpoint

on a variable name, and specify a condition that tests whether the new value is an interesting one.

Break conditions can have side e�ects, and may even call functions in your program. This

can be useful, for example, to activate functions that log program progress, or to use your own

print functions to format special data structures. The e�ects are completely predictable unless

there is another enabled breakpoint at the same address. (In that case, GDB might see the other

breakpoint �rst and stop your program without checking the condition of this one.) Note that

breakpoint commands are usually more convenient and
exible for the purpose of performing side

e�ects when a breakpoint is reached (see Section 5.1.7 [Breakpoint command lists], page 43).

42 Debugging with GDB (HP 9000 Systems)

Break conditions can be speci�ed when a breakpoint is set, by using `if' in the arguments to the

break command. See Section 5.1.1 [Setting breakpoints], page 34. They can also be changed at any

time with the condition command. You can also use the if keyword with the watch command.

The catch command does not recognize the if keyword; condition is the only way to impose a

further condition on a catchpoint.

condition bnum expression

Specify expression as the break condition for breakpoint, watchpoint, or catchpoint

number bnum. After you set a condition, breakpoint bnum stops your program only if

the value of expression is true (nonzero, in C). When you use condition, GDB checks

expression immediately for syntactic correctness, and to determine whether symbols in

it have referents in the context of your breakpoint. GDB does not actually evaluate

expression at the time the condition command is given, however. See Section 8.1

[Expressions], page 67.

condition bnum

Remove the condition from breakpoint number bnum. It becomes an ordinary uncon-

ditional breakpoint.

A special case of a breakpoint condition is to stop only when the breakpoint has been reached a

certain number of times. This is so useful that there is a special way to do it, using the ignore count

of the breakpoint. Every breakpoint has an ignore count, which is an integer. Most of the time, the

ignore count is zero, and therefore has no e�ect. But if your program reaches a breakpoint whose

ignore count is positive, then instead of stopping, it just decrements the ignore count by one and

continues. As a result, if the ignore count value is n, the breakpoint does not stop the next n times

your program reaches it.

ignore bnum count

Set the ignore count of breakpoint number bnum to count. The next count times the

breakpoint is reached, your program's execution does not stop; other than to decrement

the ignore count, GDB takes no action.

To make the breakpoint stop the next time it is reached, specify a count of zero.

When you use continue to resume execution of your program from a breakpoint, you

can specify an ignore count directly as an argument to continue, rather than using

ignore. See Section 5.2 [Continuing and stepping], page 45.

If a breakpoint has a positive ignore count and a condition, the condition is not checked.

Once the ignore count reaches zero, GDB resumes checking the condition.

Chapter 5: Stopping and Continuing 43

You could achieve the e�ect of the ignore count with a condition such as `$foo-- <= 0'

using a debugger convenience variable that is decremented each time. See Section 8.9

[Convenience variables], page 82.

Ignore counts apply to breakpoints, watchpoints, and catchpoints.

5.1.7 Breakpoint command lists

You can give any breakpoint (or watchpoint or catchpoint) a series of commands to execute

when your program stops due to that breakpoint. For example, you might want to print the values

of certain expressions, or enable other breakpoints.

commands [bnum]

. . . command-list . . .

end Specify a list of commands for breakpoint number bnum. The commands themselves

appear on the following lines. Type a line containing just end to terminate the com-

mands.

To remove all commands from a breakpoint, type commands and follow it immediately

with end; that is, give no commands.

With no bnum argument, commands refers to the last breakpoint, watchpoint, or catch-

point set (not to the breakpoint most recently encountered).

Pressing RET as a means of repeating the last GDB command is disabled within a command-list.

You can use breakpoint commands to start your program up again. Simply use the continue

command, or step, or any other command that resumes execution.

Any other commands in the command list, after a command that resumes execution, are ignored.

This is because any time you resume execution (even with a simple next or step), you may

encounter another breakpoint|which could have its own command list, leading to ambiguities

about which list to execute.

If the �rst command you specify in a command list is silent, the usual message about stopping

at a breakpoint is not printed. This may be desirable for breakpoints that are to print a speci�c

message and then continue. If none of the remaining commands print anything, you see no sign that

the breakpoint was reached. silent is meaningful only at the beginning of a breakpoint command

list.

44 Debugging with GDB (HP 9000 Systems)

The commands echo, output, and printf allow you to print precisely controlled output, and

are often useful in silent breakpoints. See Section 15.4 [Commands for controlled output], page 128.

For example, here is how you could use breakpoint commands to print the value of x at entry

to foo whenever x is positive.

break foo if x>0

commands

silent

printf "x is %d\n",x

cont

end

One application for breakpoint commands is to compensate for one bug so you can test for

another. Put a breakpoint just after the erroneous line of code, give it a condition to detect the

case in which something erroneous has been done, and give it commands to assign correct values

to any variables that need them. End with the continue command so that your program does not

stop, and start with the silent command so that no output is produced. Here is an example:

break 403

commands

silent

set x = y + 4

cont

end

5.1.8 Breakpoint menus

Some programming languages (notably C++) permit a single function name to be de�ned several

times, for application in di�erent contexts. This is called overloading. When a function name is

overloaded, `break function' is not enough to tell GDB where you want a breakpoint. If you realize

this is a problem, you can use something like `break function(types)' to specify which particular

version of the function you want. Otherwise, GDB o�ers you a menu of numbered choices for

di�erent possible breakpoints, and waits for your selection with the prompt `>'. The �rst two

options are always `[0] cancel' and `[1] all'. Typing 1 sets a breakpoint at each de�nition of

function, and typing 0 aborts the break command without setting any new breakpoints.

For example, the following session excerpt shows an attempt to set a breakpoint at the overloaded

symbol String::after. We choose three particular de�nitions of that function name:

Chapter 5: Stopping and Continuing 45

(gdb) b String::after

[0] cancel

[1] all

[2] file:String.cc; line number:867

[3] file:String.cc; line number:860

[4] file:String.cc; line number:875

[5] file:String.cc; line number:853

[6] file:String.cc; line number:846

[7] file:String.cc; line number:735

> 2 4 6

Breakpoint 1 at 0xb26c: file String.cc, line 867.

Breakpoint 2 at 0xb344: file String.cc, line 875.

Breakpoint 3 at 0xafcc: file String.cc, line 846.

Multiple breakpoints were set.

Use the "delete" command to delete unwanted

breakpoints.

(gdb)

5.2 Continuing and stepping

Continuing means resuming program execution until your program completes normally. In

contrast, stepping means executing just one more \step" of your program, where \step" may mean

either one line of source code, or one machine instruction (depending on what particular command

you use). Either when continuing or when stepping, your program may stop even sooner, due to

a breakpoint or a signal. (If due to a signal, you may want to use handle, or use `signal 0' to

resume execution. See Section 5.3 [Signals], page 48.)

continue [ignore-count]

c [ignore-count]

fg [ignore-count]

Resume program execution, at the address where your program last stopped; any

breakpoints set at that address are bypassed. The optional argument ignore-count

allows you to specify a further number of times to ignore a breakpoint at this location;

its e�ect is like that of ignore (see Section 5.1.6 [Break conditions], page 41).

The argument ignore-count is meaningful only when your program stopped due to a

breakpoint. At other times, the argument to continue is ignored.

The synonyms c and fg are provided purely for convenience, and have exactly the same

behavior as continue.

46 Debugging with GDB (HP 9000 Systems)

To resume execution at a di�erent place, you can use return (see Section 11.4 [Returning from

a function], page 106) to go back to the calling function; or jump (see Section 11.2 [Continuing at

a di�erent address], page 104) to go to an arbitrary location in your program.

A typical technique for using stepping is to set a breakpoint (see Section 5.1 [Breakpoints;

watchpoints; and catchpoints], page 33) at the beginning of the function or the section of your

program where a problem is believed to lie, run your program until it stops at that breakpoint, and

then step through the suspect area, examining the variables that are interesting, until you see the

problem happen.

step Continue running your program until control reaches a di�erent source line, then stop

it and return control to GDB. This command is abbreviated s.

Warning: If you use the step command while control is within a function
that was compiled without debugging information, execution proceeds until
control reaches a function that does have debugging information. Likewise,
it will not step into a function which is compiled without debugging infor-
mation. To step through functions without debugging information, use the
stepi command, described below.

The step command now only stops at the �rst instruction of a source line. This

prevents the multiple stops that used to occur in switch statements, for loops, etc.

step continues to stop if a function that has debugging information is called within

the line.

Also, the step command now only enters a subroutine if there is line number infor-

mation for the subroutine. Otherwise it acts like the next command. This avoids

problems when using cc -gl on MIPS machines. Previously, step entered subroutines

if there was any debugging information about the routine.

step count

Continue running as in step, but do so count times. If a breakpoint is reached, or a

signal not related to stepping occurs before count steps, stepping stops right away.

next [count]

Continue to the next source line in the current (innermost) stack frame. This is similar

to step, but function calls that appear within the line of code are executed without

stopping. Execution stops when control reaches a di�erent line of code at the original

stack level that was executing when you gave the next command. This command is

abbreviated n.

An argument count is a repeat count, as for step.

The next command now only stops at the �rst instruction of a source line. This

prevents the multiple stops that used to occur in switch statements, for loops, etc.

Chapter 5: Stopping and Continuing 47

finish Continue running until just after function in the selected stack frame returns. Print

the returned value (if any).

Contrast this with the return command (see Section 11.4 [Returning from a function],

page 106).

until

u Continue running until a source line past the current line, in the current stack frame,

is reached. This command is used to avoid single stepping through a loop more than

once. It is like the next command, except that when until encounters a jump, it

automatically continues execution until the program counter is greater than the address

of the jump.

This means that when you reach the end of a loop after single stepping though it,

until makes your program continue execution until it exits the loop. In contrast, a

next command at the end of a loop simply steps back to the beginning of the loop,

which forces you to step through the next iteration.

until always stops your program if it attempts to exit the current stack frame.

untilmay produce somewhat counterintuitive results if the order of machine code does

not match the order of the source lines. For example, in the following excerpt from

a debugging session, the f (frame) command shows that execution is stopped at line

206; yet when we use until, we get to line 195:

(gdb) f

#0 main (argc=4, argv=0xf7fffae8) at m4.c:206

206 expand_input();

(gdb) until

195 for (; argc > 0; NEXTARG) {

This happened because, for execution e�ciency, the compiler had generated code for

the loop closure test at the end, rather than the start, of the loop|even though the test

in a C for-loop is written before the body of the loop. The until command appeared

to step back to the beginning of the loop when it advanced to this expression; however,

it has not really gone to an earlier statement|not in terms of the actual machine code.

until with no argument works by means of single instruction stepping, and hence is

slower than until with an argument.

until location

u location Continue running your program until either the speci�ed location is reached, or the

current stack frame returns. location is any of the forms of argument acceptable to

break (see Section 5.1.1 [Setting breakpoints], page 34). This form of the command

uses breakpoints, and hence is quicker than until without an argument.

stepi

si Execute one machine instruction, then stop and return to the debugger.

48 Debugging with GDB (HP 9000 Systems)

It is often useful to do `display/i $pc' when stepping by machine instructions. This

makes GDB automatically display the next instruction to be executed, each time your

program stops. See Section 8.6 [Automatic display], page 74.

An argument is a repeat count, as in step.

nexti

ni Execute one machine instruction, but if it is a function call, proceed until the function

returns.

An argument is a repeat count, as in next.

5.3 Signals

A signal is an asynchronous event that can happen in a program. The operating system de�nes

the possible kinds of signals, and gives each kind a name and a number. For example, in Unix

SIGINT is the signal a program gets when you type an interrupt (often C-c); SIGSEGV is the signal

a program gets from referencing a place in memory far away from all the areas in use; SIGALRM

occurs when the alarm clock timer goes o� (which happens only if your program has requested an

alarm).

Some signals, including SIGALRM, are a normal part of the functioning of your program. Others,

such as SIGSEGV, indicate errors; these signals are fatal (kill your program immediately) if the

program has not speci�ed in advance some other way to handle the signal. SIGINT does not

indicate an error in your program, but it is normally fatal so it can carry out the purpose of the

interrupt: to kill the program.

GDB has the ability to detect any occurrence of a signal in your program. You can tell GDB in

advance what to do for each kind of signal.

Normally, GDB is set up to ignore non-erroneous signals like SIGALRM (so as not to interfere

with their role in the functioning of your program) but to stop your program immediately whenever

an error signal happens. You can change these settings with the handle command.

info signals

Print a table of all the kinds of signals and how GDB has been told to handle each one.

You can use this to see the signal numbers of all the de�ned types of signals.

info handle is the new alias for info signals.

Chapter 5: Stopping and Continuing 49

handle signal keywords. . .

Change the way GDB handles signal signal. signal can be the number of a signal or its

name (with or without the `SIG' at the beginning). The keywords say what change to

make.

The keywords allowed by the handle command can be abbreviated. Their full names are:

nostop GDB should not stop your program when this signal happens. It may still print a

message telling you that the signal has come in.

stop GDB should stop your program when this signal happens. This implies the print

keyword as well.

print GDB should print a message when this signal happens.

noprint GDB should not mention the occurrence of the signal at all. This implies the nostop

keyword as well.

pass GDB should allow your program to see this signal; your program can handle the signal,

or else it may terminate if the signal is fatal and not handled.

nopass GDB should not allow your program to see this signal.

When a signal stops your program, the signal is not visible until you continue. Your program

sees the signal then, if pass is in e�ect for the signal in question at that time. In other words, after

GDB reports a signal, you can use the handle command with pass or nopass to control whether

your program sees that signal when you continue.

You can also use the signal command to prevent your program from seeing a signal, or cause

it to see a signal it normally would not see, or to give it any signal at any time. For example, if

your program stopped due to some sort of memory reference error, you might store correct values

into the erroneous variables and continue, hoping to see more execution; but your program would

probably terminate immediately as a result of the fatal signal once it saw the signal. To prevent

this, you can continue with `signal 0'. See Section 11.3 [Giving your program a signal], page 105.

5.4 Stopping and starting in shared libraries

Shared libraries are special. Until the library is loaded, GDB does not know the names of

symbols. However, GDB gives you two ways to set breakpoints in shared libraries.

� deferred breakpoints

50 Debugging with GDB (HP 9000 Systems)

� catch load command

Deferred breakpoints

When you specify a breakpoint using a name that GDB does not recognize, the debugger warns

you with a message that it is setting a deferred breakpoint on the name you speci�ed. If any shared

library is loaded with a matching name then GDB sets the breakpoint.

For example, if you type:

`break foo'

the debugger does not know if foo is a misspelled name or if it is the name of a routine that

has not yet been loaded from a shared library. The debugger displays a warning message that it

is setting a deferred breakpoint on foo. If any shared library is loaded that contains a foo, then

GDB sets the breakpoint.

If this is not what you want, for example the name was mis-typed, then you can delete the

breakpoint.

Using catch load

The command `catch load <libname>' causes the debugger to stop when the particular library

is loaded. This gives you a chance to set breakpoints before routines are executed.

5.4.1 Privately mapping shared libraries

In cases where you attach to a running program and you try to set a breakpoint in a shared

library, GDB may generated the following message:

The shared libraries were not privately mapped; setting a

breakpoint in a shared library will not work until you rerun the program.

GDB generates this message because the debugger sets breakpoints by replacing an instruction

with a BREAK instruction. The debugger can not set a breakpoint in a shared library because doing

so can a�ect other processes on the system in addition to the process being debugged.

Chapter 5: Stopping and Continuing 51

To set the breakpoint you must kill the program and then re-run it so that the dynamic linker

will map a copy of the shared library. There are two ways to run the program:

� Re-run the program under GDB to have the debugger tell dld to map all shared libraries

private, enabling breakpoint debugging.

� Use the following command on an executable:

`/opt/langtools/bin/pxdb -s on executable-name'

The pxdb -s on command marks the executable so that dldmaps shared libraries private when

the program starts up.

5.5 Stopping and starting multi-thread programs

When your program has multiple threads (see Section 4.9 [Debugging programs with multiple

threads], page 29), you can choose whether to set breakpoints on all threads, or on a particular

thread.

break linespec thread threadno

break linespec thread threadno if . . .

linespec speci�es source lines; there are several ways of writing them, but the e�ect is

always to specify some source line.

Use the quali�er `thread threadno' with a breakpoint command to specify that you

only want GDB to stop the program when a particular thread reaches this breakpoint.

threadno is one of the numeric thread identi�ers assigned by GDB, shown in the �rst

column of the `info threads' display.

If you do not specify `thread threadno' when you set a breakpoint, the breakpoint

applies to all threads of your program.

You can use the thread quali�er on conditional breakpoints as well; in this case, place

`thread threadno' before the breakpoint condition, like this:

(gdb) break frik.c:13 thread 28 if bartab > lim

Whenever your program stops under GDB for any reason, all threads of execution stop, not

just the current thread. This allows you to examine the overall state of the program, including

switching between threads, without worrying that things may change underfoot.

Conversely, whenever you restart the program, all threads start executing. This is true even

when single-stepping with commands like step or next.

52 Debugging with GDB (HP 9000 Systems)

In particular, GDB cannot single-step all threads in lockstep. Since thread scheduling is up

to your debugging target's operating system (not controlled by GDB), other threads may execute

more than one statement while the current thread completes a single step. Moreover, in general

other threads stop in the middle of a statement, rather than at a clean statement boundary, when

the program stops.

You might even �nd your program stopped in another thread after continuing or even single-

stepping. This happens whenever some other thread runs into a breakpoint, a signal, or an exception

before the �rst thread completes whatever you requested.

Chapter 6: Examining the Stack 53

6 Examining the Stack

When your program has stopped, the �rst thing you need to know is where it stopped and how

it got there.

Each time your program performs a function call, information about the call is generated. That

information includes the location of the call in your program, the arguments of the call, and the

local variables of the function being called. The information is saved in a block of data called a

stack frame. The stack frames are allocated in a region of memory called the call stack.

When your program stops, the GDB commands for examining the stack allow you to see all of

this information.

One of the stack frames is selected by GDB and many GDB commands refer implicitly to the

selected frame. In particular, whenever you ask GDB for the value of a variable in your program,

the value is found in the selected frame. There are special GDB commands to select whichever

frame you are interested in. See Section 6.3 [Selecting a frame], page 55.

When your program stops, GDB automatically selects the currently executing frame and de-

scribes it brie
y, similar to the frame command (see Section 6.4 [Information about a frame],

page 56).

6.1 Stack frames

The call stack is divided up into contiguous pieces called stack frames, or frames for short; each

frame is the data associated with one call to one function. The frame contains the arguments given

to the function, the function's local variables, and the address at which the function is executing.

When your program is started, the stack has only one frame, that of the function main. This

is called the initial frame or the outermost frame. Each time a function is called, a new frame

is made. Each time a function returns, the frame for that function invocation is eliminated. If a

function is recursive, there can be many frames for the same function. The frame for the function

in which execution is actually occurring is called the innermost frame. This is the most recently

created of all the stack frames that still exist.

Inside your program, stack frames are identi�ed by their addresses. A stack frame consists of

many bytes, each of which has its own address; each kind of computer has a convention for choosing

54 Debugging with GDB (HP 9000 Systems)

one byte whose address serves as the address of the frame. Usually this address is kept in a register

called the frame pointer register while execution is going on in that frame.

GDB assigns numbers to all existing stack frames, starting with zero for the innermost frame, one

for the frame that called it, and so on upward. These numbers do not really exist in your program;

they are assigned by GDB to give you a way of designating stack frames in GDB commands.

Some compilers provide a way to compile functions so that they operate without stack frames.

(For example, the gcc option `-fomit-frame-pointer' generates functions without a frame.) This

is occasionally done with heavily used library functions to save the frame setup time. GDB has

limited facilities for dealing with these function invocations. If the innermost function invocation

has no stack frame, GDB nevertheless regards it as though it had a separate frame, which is

numbered zero as usual, allowing correct tracing of the function call chain. However, GDB has no

provision for frameless functions elsewhere in the stack.

frame args

The frame command allows you to move from one stack frame to another, and to print

the stack frame you select. args may be either the address of the frame of the stack

frame number. Without an argument, frame prints the current stack frame.

select-frame

The select-frame command allows you to move from one stack frame to another

without printing the frame. This is the silent version of frame.

6.2 Backtraces

A backtrace is a summary of how your program got where it is. It shows one line per frame,

for many frames, starting with the currently executing frame (frame zero), followed by its caller

(frame one), and on up the stack.

backtrace

bt Print a backtrace of the entire stack: one line per frame for all frames in the stack.

You can stop the backtrace at any time by typing the system interrupt character,

normally C-c.

backtrace n

bt n Similar, but print only the innermost n frames.

backtrace -n

bt -n Similar, but print only the outermost n frames.

Chapter 6: Examining the Stack 55

The names where and info stack (abbreviated info s) are additional aliases for backtrace.

Each line in the backtrace shows the frame number and the function name. The program counter

value is also shown|unless you use set print address off. The backtrace also shows the source

�le name and line number, as well as the arguments to the function. The program counter value is

omitted if it is at the beginning of the code for that line number.

Here is an example of a backtrace. It was made with the command `bt 3', so it shows the

innermost three frames.

#0 m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)

at builtin.c:993

#1 0x6e38 in expand_macro (sym=0x2b600) at macro.c:242

#2 0x6840 in expand_token (obs=0x0, t=177664, td=0xf7fffb08)

at macro.c:71

(More stack frames follow...)

The display for frame zero does not begin with a program counter value, indicating that your

program has stopped at the beginning of the code for line 993 of builtin.c.

6.3 Selecting a frame

Most commands for examining the stack and other data in your program work on whichever

stack frame is selected at the moment. Here are the commands for selecting a stack frame; all of

them �nish by printing a brief description of the stack frame just selected.

frame n

f n Select frame number n. Recall that frame zero is the innermost (currently executing)

frame, frame one is the frame that called the innermost one, and so on. The highest-

numbered frame is the one for main.

frame addr

f addr Select the frame at address addr. This is useful mainly if the chaining of stack frames

has been damaged by a bug, making it impossible for GDB to assign numbers properly

to all frames. In addition, this can be useful when your program has multiple stacks

and switches between them.

56 Debugging with GDB (HP 9000 Systems)

up n Move n frames up the stack. For positive numbers n, this advances toward the outer-

most frame, to higher frame numbers, to frames that have existed longer. n defaults

to one.

down n Move n frames down the stack. For positive numbers n, this advances toward the

innermost frame, to lower frame numbers, to frames that were created more recently.

n defaults to one. You may abbreviate down as do.

All of these commands end by printing two lines of output describing the frame. The �rst line

shows the frame number, the function name, the arguments, and the source �le and line number

of execution in that frame. The second line shows the text of that source line.

For example:

(gdb) up

#1 0x22f0 in main (argc=1, argv=0xf7fffbf4, env=0xf7fffbfc)

at env.c:10

10 read_input_file (argv[i]);

After such a printout, the list command with no arguments prints ten lines centered on the

point of execution in the frame. See Section 7.1 [Printing source lines], page 59.

up-silently n

down-silently n

These two commands are variants of up and down, respectively; they di�er in that they

do their work silently, without causing display of the new frame. They are intended

primarily for use in GDB command scripts, where the output might be unnecessary

and distracting.

6.4 Information about a frame

There are several other commands to print information about the selected stack frame.

frame

f When used without any argument, this command does not change which frame is

selected, but prints a brief description of the currently selected stack frame. It can be

abbreviated f. With an argument, this command is used to select a stack frame. See

Section 6.3 [Selecting a frame], page 55.

Chapter 6: Examining the Stack 57

info frame

info f This command prints a verbose description of the selected stack frame, including:

� the address of the frame

� the address of the next frame down (called by this frame)

� the address of the next frame up (caller of this frame)

� the language in which the source code corresponding to this frame is written

� the address of the frame's arguments

� the program counter saved in it (the address of execution in the caller frame)

� which registers were saved in the frame

The verbose description is useful when something has gone wrong that has made the

stack format fail to �t the usual conventions.

info frame addr

info f addr

Print a verbose description of the frame at address addr, without selecting that frame.

The selected frame remains unchanged by this command. This requires the same

kind of address (more than one for some architectures) that you specify in the frame

command. See Section 6.3 [Selecting a frame], page 55.

info args Print the arguments of the selected frame, each on a separate line.

info locals

Print the local variables of the selected frame, each on a separate line. These are all

variables (declared either static or automatic) accessible at the point of execution of

the selected frame.

58 Debugging with GDB (HP 9000 Systems)

Chapter 7: Examining Source Files 59

7 Examining Source Files

GDB can print parts of your program's source, since the debugging information recorded in

the program tells GDB what source �les were used to build it. When your program stops, GDB

spontaneously prints the line where it stopped. Likewise, when you select a stack frame (see

Section 6.3 [Selecting a frame], page 55), GDB prints the line where execution in that frame has

stopped. You can print other portions of source �les by explicit command.

If you use GDB through its gnu Emacs interface, you may prefer to use Emacs facilities to view

source; see Chapter 16 [Using GDB under gnu Emacs], page 131.

7.1 Printing source lines

To print lines from a source �le, use the list command (abbreviated l). By default, ten lines

are printed. There are several ways to specify what part of the �le you want to print.

Here are the forms of the list command most commonly used:

list linenum

Print lines centered around line number linenum in the current source �le.

list function

Print lines centered around the beginning of function function.

list Print more lines. If the last lines printed were printed with a list command, this

prints lines following the last lines printed; however, if the last line printed was a

solitary line printed as part of displaying a stack frame (see Chapter 6 [Examining the

Stack], page 53), this prints lines centered around that line.

list - Print lines just before the lines last printed.

By default, GDB prints ten source lines with any of these forms of the list command. You can

change this using set listsize:

set listsize count

Make the list command display count source lines (unless the list argument explicitly

speci�es some other number).

60 Debugging with GDB (HP 9000 Systems)

show listsize

Display the number of lines that list prints.

Repeating a list command with RET discards the argument, so it is equivalent to typing just

list. This is more useful than listing the same lines again. An exception is made for an argument

of `-'; that argument is preserved in repetition so that each repetition moves up in the source �le.

In general, the list command expects you to supply zero, one or two linespecs. Linespecs

specify source lines; there are several ways of writing them but the e�ect is always to specify some

source line. Here is a complete description of the possible arguments for list:

list linespec

Print lines centered around the line speci�ed by linespec.

list �rst,last

Print lines from �rst to last. Both arguments are linespecs.

list ,last Print lines ending with last.

list �rst,

Print lines starting with �rst.

list + Print lines just after the lines last printed.

list - Print lines just before the lines last printed.

list As described in the preceding table.

Here are the ways of specifying a single source line|all the kinds of linespec.

number Speci�es line number of the current source �le. When a list command has two

linespecs, this refers to the same source �le as the �rst linespec.

+o�set Speci�es the line o�set lines after the last line printed. When used as the second

linespec in a list command that has two, this speci�es the line o�set lines down from

the �rst linespec.

-o�set Speci�es the line o�set lines before the last line printed.

�lename:number

Speci�es line number in the source �le �lename.

function Speci�es the line that begins the body of the function function. For example: in C,

this is the line with the open brace.

Chapter 7: Examining Source Files 61

�lename:function

Speci�es the line of the open-brace that begins the body of the function function in

the �le �lename. You only need the �le name with a function name to avoid ambiguity

when there are identically named functions in di�erent source �les.

*address Speci�es the line containing the program address address. address may be any expres-

sion.

7.2 Searching source �les

There are two commands for searching through the current source �le for a regular expression.

forward-search regexp

search regexp

The command `forward-search regexp' checks each line, starting with the one follow-

ing the last line listed, for a match for regexp. It lists the line that is found. You can

use the synonym `search regexp' or abbreviate the command name as fo.

reverse-search regexp

The command `reverse-search regexp' checks each line, starting with the one before

the last line listed and going backward, for a match for regexp. It lists the line that is

found. You can abbreviate this command as rev.

7.3 Specifying source directories

Executable programs sometimes do not record the directories of the source �les from which they

were compiled, just the names. Even when they do, the directories could be moved between the

compilation and your debugging session. GDB has a list of directories to search for source �les;

this is called the source path. Each time GDB wants a source �le, it tries all the directories in the

list, in the order they are present in the list, until it �nds a �le with the desired name. Note that

the executable search path is not used for this purpose. Neither is the current working directory,

unless it happens to be in the source path.

If GDB cannot �nd a source �le in the source path, and the object program records a directory,

GDB tries that directory too. If the source path is empty, and there is no record of the compilation

directory, GDB looks in the current directory as a last resort.

62 Debugging with GDB (HP 9000 Systems)

Whenever you reset or rearrange the source path, GDB clears out any information it has cached

about where source �les are found and where each line is in the �le.

When you start GDB, its source path is empty. To add other directories, use the directory

command.

directory dirname . . .

dir dirname . . .

Add directory dirname to the front of the source path. Several directory names may

be given to this command, separated by `:' or whitespace. You may specify a directory

that is already in the source path; this moves it forward, so GDB searches it sooner.

You can use the string `$cdir' to refer to the compilation directory (if one is recorded),

and `$cwd' to refer to the current working directory. `$cwd' is not the same as `.'|the

former tracks the current working directory as it changes during your GDB session,

while the latter is immediately expanded to the current directory at the time you add

an entry to the source path.

directory

Reset the source path to empty again. This requires con�rmation.

show directories

Print the source path: show which directories it contains.

If your source path is cluttered with directories that are no longer of interest, GDB may some-

times cause confusion by �nding the wrong versions of source. You can correct the situation as

follows:

1. Use directory with no argument to reset the source path to empty.

2. Use directory with suitable arguments to reinstall the directories you want in the source

path. You can add all the directories in one command.

7.4 Specifying object �le directories

GDB enables automatic loading of debug information from object modules when an application

is compiled with the +objdebug option.

GDB uses the full path name to the object module �les and searches the same directories for

source �les.

Chapter 7: Examining Source Files 63

This behavior transparent, however, you can control over when and how object �les are loaded

with three commands.

objectdir path

Specify a colon (:) separated list of directories in which GDB searches for object �les.

These directories are added to the beginning of the existing objectdir path. If you

specify a directory that is already in the objectdir path, the speci�ed directory is

moved up in the objectdir path so that it is searched earlier.

GDB recognizes two special directory names: $cdir, which refers to the compilation

directory (if available) and $cwd, which tracks GDB's current working directory.

objectload �le.c

Cause GDB to load the debug information for �le.c immediately. The default is to load

debug information from object modules on demand.

objectretry �le.c

Force GDB to retry loading an object �le if GDB encounters a �le error while reading

an object module. File errors that might cause this include incorrect permissions, �le

not found, or if the objectdir path changes. By default, GDB does not try to read

an object �le after an error.

7.5 Checklist for locating missing �les

Here are some items to check if the debugger can not �nd your source �les.

1. Make certain the �les were compiled with the -g switch. Type info sources to �nd the list

of �les that the debugger knows were compiled with -g.

2. Make certain that the debugger can �nd the source �le. Type show

dir to �nd the list of directories the debugger uses to search for source �les and type set dir

to change that path.

On HP-UX, the debug information does not contain the full pathname to the source �le, only

the relative pathname that was recorded at compile time. Consequently, you may need several

dir commands for a complex application with multiple source directories. One way to do this

is to place them in a `.gdbinit' �le placed in the directory used to debug the application.

A sample of the `.gdbinit' �le might look like the following:

dir /home/fred/appx/system

dir /home/fred/appx/display

dir /home/fred/appx/actor

64 Debugging with GDB (HP 9000 Systems)

dir /home/fred/appx/actor/sys

...

Note, When you compile your program with the +objdebug option, the debugger may �nd

your source �les without using the dir command. This happens because the debugger stores

the full path name to the object �les and searches for source �les in the same directories.

7.6 Source and machine code

You can use the command info line to map source lines to program addresses (and vice versa),

and the command disassemble to display a range of addresses as machine instructions. When

run under gnu Emacs mode, the info line command now causes the arrow to point to the line

speci�ed. Also, info line prints addresses in symbolic form as well as hex.

info line linespec

Print the starting and ending addresses of the compiled code for source line linespec.

You can specify source lines in any of the ways understood by the list command (see

Section 7.1 [Printing source lines], page 59).

For example, we can use info line to discover the location of the object code for the �rst line

of function m4_changequote:

(gdb) info line m4_changecom

Line 895 of "builtin.c" starts at pc 0x634c and ends at 0x6350.

We can also inquire (using *addr as the form for linespec) what source line covers a particular

address:

(gdb) info line *0x63ff

Line 926 of "builtin.c" starts at pc 0x63e4 and ends at 0x6404.

After info line, the default address for the x command is changed to the starting address of

the line, so that `x/i' is su�cient to begin examining the machine code (see Section 8.5 [Examining

memory], page 72). Also, this address is saved as the value of the convenience variable $_ (see

Section 8.9 [Convenience variables], page 82).

disassemble

This specialized command dumps a range of memory as machine instructions. The

default memory range is the function surrounding the program counter of the selected

Chapter 7: Examining Source Files 65

frame. A single argument to this command is a program counter value; GDB dumps

the function surrounding this value. Two arguments specify a range of addresses (�rst

inclusive, second exclusive) to dump.

The following example shows the disassembly of a range of addresses of HP PA-RISC 2.0 code:

(gdb) disas 0x32c4 0x32e4

Dump of assembler code from 0x32c4 to 0x32e4:

0x32c4 <main+204>: addil 0,dp

0x32c8 <main+208>: ldw 0x22c(sr0,r1),r26

0x32cc <main+212>: ldil 0x3000,r31

0x32d0 <main+216>: ble 0x3f8(sr4,r31)

0x32d4 <main+220>: ldo 0(r31),rp

0x32d8 <main+224>: addil -0x800,dp

0x32dc <main+228>: ldo 0x588(r1),r26

0x32e0 <main+232>: ldil 0x3000,r31

End of assembler dump.

66 Debugging with GDB (HP 9000 Systems)

Chapter 8: Examining Data 67

8 Examining Data

The usual way to examine data in your program is with the print command (abbreviated p),

or its synonym inspect. It evaluates and prints the value of an expression of the language your

program is written in (see Chapter 9 [Using GDB with Di�erent Languages], page 87).

print exp

print /f exp

exp is an expression (in the source language). By default the value of exp is printed in

a format appropriate to its data type; you can choose a di�erent format by specifying

`/f ', where f is a letter specifying the format; see Section 8.4 [Output formats], page 71.

print

print /f If you omit exp, GDB displays the last value again (from the value history ; see Sec-

tion 8.8 [Value history], page 81). This allows you to conveniently inspect the same

value in an alternative format.

A more low-level way of examining data is with the x command. It examines data in memory

at a speci�ed address and prints it in a speci�ed format. See Section 8.5 [Examining memory],

page 72.

If you are interested in information about types, or about how the �elds of a struct or class are

declared, use the ptype exp command rather than print. See Chapter 10 [Examining the Symbol

Table], page 99.

8.1 Expressions

print and many other GDB commands accept an expression and compute its value. Any kind

of constant, variable or operator de�ned by the programming language you are using is valid in an

expression in GDB. This includes conditional expressions, function calls, casts and string constants.

It unfortunately does not include symbols de�ned by preprocessor #define commands.

GDB now supports array constants in expressions input by the user. The syntax is {element,

element. . .}. For example, you can now use the command print {1, 2, 3} to build up an array in

memory that is malloc'd in the target program.

68 Debugging with GDB (HP 9000 Systems)

Because C is so widespread, most of the expressions shown in examples in this manual are in

C. See Chapter 9 [Using GDB with Di�erent Languages], page 87, for information on how to use

expressions in other languages.

In this section, we discuss operators that you can use in GDB expressions regardless of your

programming language.

Casts are supported in all languages, not just in C, because it is so useful to cast a number into

a pointer in order to examine a structure at that address in memory.

GDB supports these operators, in addition to those common to programming languages:

@ `@' is a binary operator for treating parts of memory as arrays. See Section 8.3 [Arti�cial

arrays], page 70, for more information.

:: `::' allows you to specify a variable in terms of the �le or function where it is de�ned.

See Section 8.2 [Program variables], page 68.

{type} addr

Refers to an object of type type stored at address addr in memory. addr may be any

expression whose value is an integer or pointer (but parentheses are required around

binary operators, just as in a cast). This construct is allowed regardless of what kind

of data is normally supposed to reside at addr.

8.2 Program variables

The most common kind of expression to use is the name of a variable in your program.

Variables in expressions are understood in the selected stack frame (see Section 6.3 [Selecting a

frame], page 55); they must be either:

� global (or �le-static)

or

� visible according to the scope rules of the programming language from the point of execution

in that frame

Chapter 8: Examining Data 69

This means that in the function

foo (a)

int a;

{

bar (a);

{

int b = test ();

bar (b);

}

}

you can examine and use the variable a whenever your program is executing within the function

foo, but you can only use or examine the variable b while your program is executing inside the

block where b is declared.

There is an exception: you can refer to a variable or function whose scope is a single source �le

even if the current execution point is not in this �le. But it is possible to have more than one such

variable or function with the same name (in di�erent source �les). If that happens, referring to

that name has unpredictable e�ects. If you wish, you can specify a static variable in a particular

function or �le, using the colon-colon notation:

�le::variable
function::variable

Here �le or function is the name of the context for the static variable. In the case of �le names,

you can use quotes to make sure GDB parses the �le name as a single word|for example, to print

a global value of x de�ned in `f2.c':

(gdb) p 'f2.c'::x

This use of `::' is very rarely in con
ict with the very similar use of the same notation in C++.

GDB also supports use of the C++ scope resolution operator in GDB expressions.

Warning: Occasionally, a local variable may appear to have the wrong value at certain
points in a function|just after entry to a new scope, and just before exit.

You may see this problem when you are stepping by machine instructions. This is because,

on most machines, it takes more than one instruction to set up a stack frame (including local

variable de�nitions); if you are stepping by machine instructions, variables may appear to have the

70 Debugging with GDB (HP 9000 Systems)

wrong values until the stack frame is completely built. On exit, it usually also takes more than

one machine instruction to destroy a stack frame; after you begin stepping through that group of

instructions, local variable de�nitions may be gone.

8.3 Arti�cial arrays

It is often useful to print out several successive objects of the same type in memory; a section of

an array, or an array of dynamically determined size for which only a pointer exists in the program.

You can do this by referring to a contiguous span of memory as an arti�cial array, using the

binary operator `@'. The left operand of `@' should be the �rst element of the desired array and be

an individual object. The right operand should be the desired length of the array. The result is an

array value whose elements are all of the type of the left argument. The �rst element is actually

the left argument; the second element comes from bytes of memory immediately following those

that hold the �rst element, and so on. Here is an example. If a program says

int *array = (int *) malloc (len * sizeof (int));

you can print the contents of array with

p *array@len

The left operand of `@' must reside in memory. Array values made with `@' in this way behave just

like other arrays in terms of subscripting, and are coerced to pointers when used in expressions.

Arti�cial arrays most often appear in expressions via the value history (see Section 8.8 [Value

history], page 81), after printing one out.

Another way to create an arti�cial array is to use a cast. This re-interprets a value as if it were

an array. The value need not be in memory:

(gdb) p/x (short[2])0x12345678

$1 = {0x1234, 0x5678}

As a convenience, if you leave the array length out (as in `(type)[])value') gdb calculates the

size to �ll the value (as `sizeof(value)/sizeof(type)':

(gdb) p/x (short[])0x12345678

$2 = {0x1234, 0x5678}

Chapter 8: Examining Data 71

Sometimes the arti�cial array mechanism is not quite enough; in moderately complex data

structures, the elements of interest may not actually be adjacent|for example, if you are interested

in the values of pointers in an array. One useful work-around in this situation is to use a convenience

variable (see Section 8.9 [Convenience variables], page 82) as a counter in an expression that prints

the �rst interesting value, and then repeat that expression via RET. For instance, suppose you have

an array dtab of pointers to structures, and you are interested in the values of a �eld fv in each

structure. Here is an example of what you might type:

set $i = 0

p dtab[$i++]->fv

RET

RET

. . .

8.4 Output formats

By default, GDB prints a value according to its data type. Sometimes this is not what you

want. For example, you might want to print a number in hex, or a pointer in decimal. Or you

might want to view data in memory at a certain address as a character string or as an instruction.

To do these things, specify an output format when you print a value.

The simplest use of output formats is to say how to print a value already computed. This is done

by starting the arguments of the print command with a slash and a format letter. The format

letters supported are:

x Regard the bits of the value as an integer, and print the integer in hexadecimal.

d Print as integer in signed decimal.

u Print as integer in unsigned decimal.

o Print as integer in octal.

t Print as integer in binary. The letter `t' stands for \two".1

a Print as an address, both absolute in hexadecimal and as an o�set from the

nearest preceding symbol. You can use this format used to discover where (in what

function) an unknown address is located:

(gdb) p/a 0x54320

$3 = 0x54320 <_initialize_vx+396>

1 `b' cannot be used because these format letters are also used with the x command, where `b'

stands for \byte"; see Section 8.5 [Examining memory], page 72.

72 Debugging with GDB (HP 9000 Systems)

c Regard as an integer and print it as a character constant.

f Regard the bits of the value as a
oating point number and print using typical
oating

point syntax.

For example, to print the program counter in hex (see Section 8.10 [Registers], page 84), type

p/x $pc

Note that no space is required before the slash; this is because command names in GDB cannot

contain a slash.

To reprint the last value in the value history with a di�erent format, you can use the print

command with just a format and no expression. For example, `p/x' reprints the last value in hex.

8.5 Examining memory

You can use the command x (for \examine") to examine memory in any of several formats,

independently of your program's data types.

x/nfu addr

x addr

x Use the x command to examine memory.

n, f, and u are all optional parameters that specify how much memory to display and how to

format it; addr is an expression giving the address where you want to start displaying memory. If

you use defaults for nfu, you need not type the slash `/'. Several commands set convenient defaults

for addr.

n, the repeat count

The repeat count is a decimal integer; the default is 1. It speci�es how much memory

(counting by units u) to display.

f, the display format

The display format is one of the formats used by print, `s' (null-terminated string),

or `i' (machine instruction). The default is `x' (hexadecimal) initially. The default

changes each time you use either x or print.

Chapter 8: Examining Data 73

u, the unit size

The unit size is any of

b Bytes.

h Halfwords (two bytes).

w Words (four bytes). This is the initial default.

g Giant words (eight bytes).

Each time you specify a unit size with x, that size becomes the default unit the next

time you use x. (For the `s' and `i' formats, the unit size is ignored and is normally

not written.)

addr, starting display address

addr is the address where you want GDB to begin displaying memory. The expression

need not have a pointer value (though it may); it is always interpreted as an integer ad-

dress of a byte of memory. See Section 8.1 [Expressions], page 67, for more information

on expressions. The default for addr is usually just after the last address examined|

but several other commands also set the default address: info breakpoints (to the

address of the last breakpoint listed), info line (to the starting address of a line), and

print (if you use it to display a value from memory).

For example, `x/3uh 0x54320' is a request to display three halfwords (h) of memory, formatted

as unsigned decimal integers (`u'), starting at address 0x54320. `x/4xw $sp' prints the four words

(`w') of memory above the stack pointer (here, `$sp'; see Section 8.10 [Registers], page 84) in

hexadecimal (`x').

Since the letters indicating unit sizes are all distinct from the letters specifying output formats,

you do not have to remember whether unit size or format comes �rst; either order works. The

output speci�cations `4xw' and `4wx' mean exactly the same thing. (However, the count n must

come �rst; `wx4' does not work.)

Even though the unit size u is ignored for the formats `s' and `i', you might still want to use a

count n; for example, `3i' speci�es that you want to see three machine instructions, including any

operands. The command disassemble gives an alternative way of inspecting machine instructions;

see Section 7.6 [Source and machine code], page 64.

All the defaults for the arguments to x are designed to make it easy to continue scanning

memory with minimal speci�cations each time you use x. For example, after you have inspected

three machine instructions with `x/3i addr', you can inspect the next seven with just `x/7'. If you

use RET to repeat the x command, the repeat count n is used again; the other arguments default

as for successive uses of x.

74 Debugging with GDB (HP 9000 Systems)

The addresses and contents printed by the x command are not saved in the value history because

there is often too much of them and they would get in the way. Instead, GDB makes these values

available for subsequent use in expressions as values of the convenience variables $_ and $__. After

an x command, the last address examined is available for use in expressions in the convenience

variable $_. The contents of that address, as examined, are available in the convenience variable

$__.

If the x command has a repeat count, the address and contents saved are from the last memory

unit printed; this is not the same as the last address printed if several units were printed on the

last line of output.

8.6 Automatic display

If you �nd that you want to print the value of an expression frequently (to see how it changes),

you might want to add it to the automatic display list so that GDB prints its value each time your

program stops. Each expression added to the list is given a number to identify it; to remove an

expression from the list, you specify that number. The automatic display looks like this:

2: foo = 38

3: bar[5] = (struct hack *) 0x3804

This display shows item numbers, expressions and their current values. As with displays you request

manually using x or print, you can specify the output format you prefer; in fact, display decides

whether to use print or x depending on how elaborate your format speci�cation is|it uses x if you

specify a unit size, or one of the two formats (`i' and `s') that are only supported by x; otherwise

it uses print.

display exp

Add the expression exp to the list of expressions to display each time your program

stops. See Section 8.1 [Expressions], page 67.

display does not repeat if you press RET again after using it.

display/fmt exp

For fmt specifying only a display format and not a size or count, add the expression

exp to the auto-display list but arrange to display it each time in the speci�ed format

fmt. See Section 8.4 [Output formats], page 71.

Chapter 8: Examining Data 75

display/fmt addr

For fmt `i' or `s', or including a unit-size or a number of units, add the expression addr

as a memory address to be examined each time your program stops. Examining means

in e�ect doing `x/fmt addr'. See Section 8.5 [Examining memory], page 72.

For example, `display/i $pc' can be helpful, to see the machine instruction about to be exe-

cuted each time execution stops (`$pc' is a common name for the program counter; see Section 8.10

[Registers], page 84).

undisplay dnums. . .

delete display dnums. . .

Remove item numbers dnums from the list of expressions to display.

undisplay does not repeat if you press RET after using it. (Otherwise you would just

get the error `No display number . . .'.)

disable display dnums. . .

Disable the display of item numbers dnums. A disabled display item is not printed

automatically, but is not forgotten. It may be enabled again later.

enable display dnums. . .

Enable display of item numbers dnums. It becomes e�ective once again in auto display

of its expression, until you specify otherwise.

display Display the current values of the expressions on the list, just as is done when your

program stops.

info display

Print the list of expressions previously set up to display automatically, each one with

its item number, but without showing the values. This includes disabled expressions,

which are marked as such. It also includes expressions which would not be displayed

right now because they refer to automatic variables not currently available.

If a display expression refers to local variables, then it does not make sense outside the lexical

context for which it was set up. Such an expression is disabled when execution enters a context

where one of its variables is not de�ned. For example, if you give the command display last_

char while inside a function with an argument last_char, GDB displays this argument while

your program continues to stop inside that function. When it stops elsewhere|where there is

no variable last_char|the display is disabled automatically. The next time your program stops

where last_char is meaningful, you can enable the display expression once again.

76 Debugging with GDB (HP 9000 Systems)

8.7 Print settings

GDB provides the following ways to control how arrays, structures, and symbols are printed.

These settings are useful for debugging programs in any language:

set print address

set print address on

GDB prints memory addresses showing the location of stack traces, structure values,

pointer values, breakpoints, and so forth, even when it also displays the contents of

those addresses. The default is on. For example, this is what a stack frame display

looks like with set print address on:

(gdb) f

#0 set_quotes (lq=0x34c78 "<<", rq=0x34c88 ">>")

at input.c:530

530 if (lquote != def_lquote)

set print address off

Do not print addresses when displaying their contents. For example, this is the same

stack frame displayed with set print address off:

(gdb) set print addr off

(gdb) f

#0 set_quotes (lq="<<", rq=">>") at input.c:530

530 if (lquote != def_lquote)

You can use `set print address off' to eliminate all machine dependent displays from

the GDB interface. For example, with print address off, you should get the same

text for backtraces on all machines|whether or not they involve pointer arguments.

show print address

Show whether or not addresses are to be printed.

When GDB prints a symbolic address, it normally prints the closest earlier symbol plus an

o�set. If that symbol does not uniquely identify the address (for example, it is a name whose scope

is a single source �le), you may need to clarify. One way to do this is with info line, for example

`info line *0x4537'. Alternately, you can set GDB to print the source �le and line number when

it prints a symbolic address:

set print symbol-filename on

Tell GDB to print the source �le name and line number of a symbol in the symbolic

form of an address.

Chapter 8: Examining Data 77

set print symbol-filename off

Do not print source �le name and line number of a symbol. This is the default.

show print symbol-filename

Show whether or not GDB will print the source �le name and line number of a symbol

in the symbolic form of an address.

Another situation where it is helpful to show symbol �lenames and line numbers is when disas-

sembling code; GDB shows you the line number and source �le that corresponds to each instruction.

Also, you may wish to see the symbolic form only if the address being printed is reasonably

close to the closest earlier symbol:

set print max-symbolic-offset max-o�set

Tell GDB to only display the symbolic form of an address if the o�set between the

closest earlier symbol and the address is less than max-o�set. The default is 0, which

tells GDB to always print the symbolic form of an address if any symbol precedes it.

show print max-symbolic-offset

Ask how large the maximum o�set is that GDB prints in a symbolic address.

If you have a pointer and you are not sure where it points, try `set print symbol-filename

on'. Then you can determine the name and source �le location of the variable where it points,

using `p/a pointer'. This interprets the address in symbolic form. For example, here GDB shows

that a variable ptt points at another variable t, de�ned in `hi2.c':

(gdb) set print symbol-filename on

(gdb) p/a ptt

$4 = 0xe008 <t in hi2.c>

Warning: For pointers that point to a local variable, `p/a' does not show the symbol
name and �lename of the referent, even with the appropriate set print options turned
on.

Other settings control how di�erent kinds of objects are printed:

set print array

set print array on

Pretty print arrays. This format is more convenient to read, but uses more space. The

default is o�.

78 Debugging with GDB (HP 9000 Systems)

set print array off

Return to compressed format for arrays.

show print array

Show whether compressed or pretty format is selected for displaying arrays.

set print elements number-of-elements

Set a limit on how many elements of an array GDB will print. If GDB is printing a

large array, it stops printing after it has printed the number of elements set by the set

print elements command. This limit also applies to the display of strings. Setting

number-of-elements to zero means that the printing is unlimited.

show print elements

Display the number of elements of a large array that GDB will print. If the number is

0, then the printing is unlimited.

set print null-stop

Cause GDB to stop printing the characters of an array when the �rst NULL is en-

countered. This is useful when large arrays actually contain only short strings.

set print pretty on

Cause GDB to print structures in an indented format with one member per line, like

this:

$1 = {

next = 0x0,

flags = {

sweet = 1,

sour = 1

},

meat = 0x54 "Pork"

}

set print pretty off

Cause GDB to print structures in a compact format, like this:

$1 = {next = 0x0, flags = {sweet = 1, sour = 1}, \

meat = 0x54 "Pork"}

This is the default format.

show print pretty

Show which format GDB is using to print structures.

set print sevenbit-strings on

Print using only seven-bit characters; if this option is set, GDB displays any eight-bit

characters (in strings or character values) using the notation \nnn. This setting is best

if you are working in English (ascii) and you use the high-order bit of characters as a

marker or \meta" bit.

Chapter 8: Examining Data 79

set print sevenbit-strings off

Print full eight-bit characters. This allows the use of more international character sets,

and is the default.

show print sevenbit-strings

Show whether or not GDB is printing only seven-bit characters.

set print union on

Tell GDB to print unions which are contained in structures. This is the default setting.

set print union off

Tell GDB not to print unions which are contained in structures.

show print union

Ask GDB whether or not it will print unions which are contained in structures.

For example, given the declarations

typedef enum {Tree, Bug} Species;

typedef enum {Big_tree, Acorn, Seedling} Tree_forms;

typedef enum {Caterpillar, Cocoon, Butterfly}

Bug_forms;

struct thing {

Species it;

union {

Tree_forms tree;

Bug_forms bug;

} form;

};

struct thing foo = {Tree, {Acorn}};

with set print union on in e�ect `p foo' would print

$1 = {it = Tree, form = {tree = Acorn, bug = Cocoon}}

and with set print union off in e�ect it would print

$1 = {it = Tree, form = {...}}

These settings are of interest when debugging C++ programs:

set print demangle

set print demangle on

Print C++ names in their source form rather than in the encoded (\mangled") form

passed to the assembler and linker for type-safe linkage. The default is `on'.

show print demangle

Show whether C++ names are printed in mangled or demangled form.

80 Debugging with GDB (HP 9000 Systems)

set print asm-demangle

set print asm-demangle on

Print C++ names in their source form rather than their mangled form, even in assembler

code printouts such as instruction disassemblies. The default is o�.

show print asm-demangle

Show whether C++ names in assembly listings are printed in mangled or demangled

form.

set demangle-style style

Choose among several encoding schemes used by di�erent compilers to represent C++

names. The choices for style are currently:

auto Allow GDB to choose a decoding style by inspecting your program.

gnu Decode based on the gnu C++ compiler (g++) encoding algorithm.

hp Decode based on the HP ANSI C++ (aCC) encoding algorithm.

lucid Decode based on the Lucid C++ compiler (lcc) encoding algorithm.

arm Decode using the algorithm in the C++ Annotated Reference Manual.

Warning: this setting alone is not su�cient to allow debugging cfront-

generated executables. GDB would require further enhancement to permit

that.

foo Show the list of formats.

show demangle-style

Display the encoding style currently in use for decoding C++ symbols.

set print object

set print object on

When displaying a pointer to an object, identify the actual (derived) type of the object

rather than the declared type, using the virtual function table.

set print object off

Display only the declared type of objects, without reference to the virtual function

table. This is the default setting.

show print object

Show whether actual, or declared, object types are displayed.

set print static-members

set print static-members on

Print static members when displaying a C++ object. The default is on.

set print static-members off

Do not print static members when displaying a C++ object.

Chapter 8: Examining Data 81

show print static-members

Show whether C++ static members are printed, or not.

set print vtbl

set print vtbl on

Pretty print C++ virtual function tables. The default is o�. (The vtbl commands do

not work on programs compiled with the HP ANSI C++ compiler (aCC).)

set print vtbl off

Do not pretty print C++ virtual function tables.

show print vtbl

Show whether C++ virtual function tables are pretty printed, or not.

8.8 Value history

Values printed by the print command are saved in the GDB value history. This allows you to

refer to them in other expressions. Values are kept until the symbol table is re-read or discarded

(for example with the file or symbol-file commands). When the symbol table changes, the value

history is discarded, since the values may contain pointers back to the types de�ned in the symbol

table.

The values printed are given history numbers by which you can refer to them. These are

successive integers starting with one. print shows you the history number assigned to a value by

printing `$num = ' before the value; here num is the history number.

To refer to any previous value, use `$' followed by the value's history number. The way print

labels its output is designed to remind you of this. Just $ refers to the most recent value in the

history, and $$ refers to the value before that. $$n refers to the nth value from the end; $$2 is the

value just prior to $$, $$1 is equivalent to $$, and $$0 is equivalent to $.

For example, suppose you have just printed a pointer to a structure and want to see the contents

of the structure. It su�ces to type

p *$

If you have a chain of structures where the component next points to the next one, you can

print the contents of the next one with this:

p *$.next

82 Debugging with GDB (HP 9000 Systems)

You can print successive links in the chain by repeating this command|which you can do by just

typing RET.

Note that the history records values, not expressions. If the value of x is 4 and you type these

commands:

print x

set x=5

then the value recorded in the value history by the print command remains 4 even though the

value of x has changed.

show values

Print the last ten values in the value history, with their item numbers. This is like `p

$$9' repeated ten times, except that show values does not change the history.

show values n

Print ten history values centered on history item number n.

show values +

Print ten history values just after the values last printed. If no more values are available,

show values + produces no display.

Pressing RET to repeat show values n has exactly the same e�ect as `show values +'.

8.9 Convenience variables

GDB provides convenience variables that you can use within GDB to hold on to a value and

refer to it later. These variables exist entirely within GDB; they are not part of your program, and

setting a convenience variable has no direct e�ect on further execution of your program. That is

why you can use them freely.

Convenience variables are pre�xed with `$'. Any name preceded by `$' can be used for a conve-

nience variable, unless it is one of the prede�ned machine-speci�c register names (see Section 8.10

[Registers], page 84). (Value history references, in contrast, are numbers preceded by `$'. See

Section 8.8 [Value history], page 81.)

You can save a value in a convenience variable with an assignment expression, just as you would

set a variable in your program. For example:

Chapter 8: Examining Data 83

set $foo = *object_ptr

would save in $foo the value contained in the object pointed to by object_ptr.

Using a convenience variable for the �rst time creates it, but its value is void until you assign

a new value. You can alter the value with another assignment at any time.

Convenience variables have no �xed types. You can assign a convenience variable any type of

value, including structures and arrays, even if that variable already has a value of a di�erent type.

The convenience variable, when used as an expression, has the type of its current value.

show convenience

Print a list of convenience variables used so far, and their values. Abbreviated show

con.

One of the ways to use a convenience variable is as a counter to be incremented or a pointer to

be advanced. For example, to print a �eld from successive elements of an array of structures:

set $i = 0

print bar[$i++]->contents

Repeat that command by typing RET.

Some convenience variables are created automatically by GDB and given values likely to be

useful.

$_ The variable $_ is automatically set by the x command to the last address examined

(see Section 8.5 [Examining memory], page 72). Other commands which provide a

default address for x to examine also set $_ to that address; these commands include

info line and info breakpoint. The type of $_ is void * except when set by the x

command, in which case it is a pointer to the type of $__.

$__ The variable $__ is automatically set by the x command to the value found in the

last address examined. Its type is chosen to match the format in which the data was

printed.

$_exitcode

The variable $_exitcode is automatically set to the exit code when the program being

debugged terminates.

84 Debugging with GDB (HP 9000 Systems)

If you refer to a function or variable name that begins with a dollar sign, GDB searches for a

user or system name �rst, before it searches for a convenience variable.

8.10 Registers

You can refer to machine register contents, in expressions, as variables with names starting with

`$'. The names of registers are di�erent for each machine; use info registers to see the names

used on your machine.

info registers

Print the names and values of all registers except
oating-point registers (in the selected

stack frame).

info all-registers

Print the names and values of all registers, including
oating-point registers.

info registers regname . . .

Print the relativized value of each speci�ed register regname. As discussed in detail

below, register values are normally relative to the selected stack frame. regname may

be any register name valid on the machine you are using, with or without the initial

`$'.

GDB has four \standard" register names that are available (in expressions) on most machines|

whenever they do not con
ict with an architecture's canonical mnemonics for registers. The register

names $pc and $sp are used for the program counter register and the stack pointer. $fp is used

for a register that contains a pointer to the current stack frame, and $ps is used for a register that

contains the processor status. For example, you could print the program counter in hex with

p/x $pc

or print the instruction to be executed next with

x/i $pc

or add four to the stack pointer2 with

2 This is a way of removing one word from the stack, on machines where stacks grow downward in

memory (most machines, nowadays). This assumes that the innermost stack frame is selected;

setting $sp is not allowed when other stack frames are selected. To pop entire frames o�

Chapter 8: Examining Data 85

set $sp += 4

Whenever possible, these four standard register names are available on your machine even though

the machine has di�erent canonical mnemonics, so long as there is no con
ict. The info registers

command shows the canonical names. For example, on the SPARC, info registers displays the

processor status register as $psr but you can also refer to it as $ps.

GDB always considers the contents of an ordinary register as an integer when the register is

examined in this way. Some machines have special registers which can hold nothing but
oating

point; these registers are considered to have
oating point values. There is no way to refer to the

contents of an ordinary register as
oating point value (although you can print it as a
oating point

value with `print/f $regname').

Some registers have distinct \raw" and \virtual" data formats. This means that the data

format in which the register contents are saved by the operating system is not the same one that

your program normally sees. For example, the registers of the 68881
oating point coprocessor

are always saved in \extended" (raw) format, but all C programs expect to work with \double"

(virtual) format. In such cases, GDB normally works with the virtual format only (the format that

makes sense for your program), but the info registers command prints the data in both formats.

Normally, register values are relative to the selected stack frame (see Section 6.3 [Selecting a

frame], page 55). This means that you get the value that the register would contain if all stack

frames farther in were exited and their saved registers restored. In order to see the true contents

of hardware registers, you must select the innermost frame (with `frame 0').

However, GDB must deduce where registers are saved, from the machine code generated by your

compiler. If some registers are not saved, or if GDB is unable to locate the saved registers, the

selected stack frame makes no di�erence.

8.11 Floating point hardware

Depending on the con�guration, GDB may be able to give you more information about the

status of the
oating point hardware.

the stack, regardless of machine architecture, use return; see Section 11.4 [Returning from a

function], page 106.

86 Debugging with GDB (HP 9000 Systems)

info float

Display hardware-dependent information about the
oating point unit. The exact

contents and layout vary depending on the
oating point chip. Currently, `info float'

is supported on the ARM and x86 machines.

Chapter 9: Using GDB with Di�erent Languages 87

9 Using GDBwithDi�erent Languages

Language-speci�c information is built into GDB for some languages, allowing you to express

operations like the above in your program's native language, and allowing GDB to output values

in a manner consistent with the syntax of your program's native language. The language you use

to build expressions is called the working language.

9.1 Switching between source languages

There are two ways to control the working language|either have GDB set it automatically,

or select it manually yourself. You can use the set language command for either purpose. On

startup, GDB defaults to setting the language automatically. The working language is used to

determine how expressions you type are interpreted, how values are printed, etc.

In addition to the working language, every source �le that GDB knows about has its own working

language. For some object �le formats, the compiler might indicate which language a particular

source �le is in. However, most of the time GDB infers the language from the name of the �le.

The language of a source �le controls whether C++ names are demangled|this way backtrace

can show each frame appropriately for its own language. There is no way to set the language of a

source �le from within GDB.

This is most commonly a problem when you use a program, such as cfront or f2c, that generates

C but is written in another language. In that case, make the program use #line directives in its C

output; that way GDB will know the correct language of the source code of the original program,

and will display that source code, not the generated C code.

9.1.1 List of �lename extensions and languages

If a source �le name ends in one of the following extensions, then GDB infers that its language

is the one indicated.

`.c' C source �le

`.C'

`.cc'

`.cxx'

88 Debugging with GDB (HP 9000 Systems)

`.cpp'

`.cp'

`.c++' C++ source �le

`.s'

`.S' Assembler source �le. This actually behaves almost like C, but GDB does not skip

over function prologues when stepping.

`.f'

`.f90' Fortran source �les. GDB does not distinguish between Fortran 77 and Fortran 90 �les.

9.1.2 Setting the working language

If you allow GDB to set the language automatically, expressions are interpreted the same way

in your debugging session and your program.

If you wish, you may set the language manually. To do this, issue the command `set language

lang ', where lang is the name of a language, such as c. For a list of the supported languages, type

`set language'.

Setting the language manually prevents GDB from updating the working language automatically.

For example, if you used the c setting to debug a C++ program, names might not be demangled

properly, overload resolution would not work, user-de�ned operators might not be interpreted

correctly, and so on.

9.1.3 Having GDB infer the source language

To have GDB set the working language automatically, use `set language local' or `set

language auto'. GDB then infers the working language. That is, when your program stops in

a frame (usually by encountering a breakpoint), GDB sets the working language to the language

recorded for the function in that frame. If the language for a frame is unknown (that is, if the

function or block corresponding to the frame was de�ned in a source �le that does not have a

recognized extension), the current working language is not changed, and GDB issues a warning.

This may not seem necessary for most programs, which are written entirely in one source lan-

guage. However, program modules and libraries written in one source language can be used by a

main program written in a di�erent source language. Using `set language auto' in this case frees

you from having to set the working language manually.

Chapter 9: Using GDB with Di�erent Languages 89

9.2 Displaying the language

The following commands help you �nd out which language is the working language, and also

what language source �les were written in.

show language

Display the current working language. This is the language you can use with commands

such as print to build and compute expressions that may involve variables in your

program.

info frame

Display the source language for this frame. This language becomes the working lan-

guage if you use an identi�er from this frame. See Section 6.4 [Information about a

frame], page 56, to identify the other information listed here.

info source

Display the source language of this source �le. See Chapter 10 [Examining the Symbol

Table], page 99, to identify the other information listed here.

9.3 Supported languages

GDB 4 supports C, C++, and HP Fortran.

Some GDB features may be used in expressions regardless of the language you use: the GDB @

and :: operators, and the `{type}addr' construct (see Section 8.1 [Expressions], page 67) can be

used with the constructs of any supported language.

The following sections detail to what degree each source language is supported by GDB. These

sections are not meant to be language tutorials or references, but serve only as a reference guide to

what the GDB expression parser accepts, and what input and output formats should look like for

di�erent languages. There are many good books written on each of these languages; please look to

these for a language reference or tutorial.

Since C and C++ are so closely related, many features of GDB apply to both languages. When-

ever this is the case, we discuss those languages together.

You can use GDB to debug C programs compiled with either the HP C compiler (cc) or the

GNU C compiler (gcc), and to debug programs compiled with either the HP ANSI C++ compiler

90 Debugging with GDB (HP 9000 Systems)

(aCC) or the gnu C++ compiler (g++). GDB supports debugging programs written in both HP-UX

Fortran 77 (f77) or Fortran 90 (f90).

If you compile with the gnu C++ compiler, use the stabs debugging format for best results when

debugging. You can select that format explicitly with the g++ command-line options `-gstabs' or

`-gstabs+'. See section \Options for Debugging Your Program or gnu CC" in Using gnu CC , for

more information.

9.3.1 C and C++ operators

Operators must be de�ned on values of speci�c types. For instance, + is de�ned on numbers,

but not on structures. Operators are often de�ned on groups of types.

For the purposes of C and C++, the following de�nitions hold:

� Integral types include int with any of its storage-class speci�ers; char; enum; and, for C++,

bool.

� Floating-point types include float and double.

� Pointer types include all types de�ned as (type *).

� Scalar types include all of the above.

The following operators are supported. They are listed here in order of increasing precedence:

, The comma or sequencing operator. Expressions in a comma-separated list are evalu-

ated from left to right, with the result of the entire expression being the last expression

evaluated.

= Assignment. The value of an assignment expression is the value assigned. De�ned on

scalar types.

op= Used in an expression of the form a op= b, and translated to a = a op b. op= and =

have the same precendence. op is any one of the operators |, ^, &, <<, >>, +, -, *, /, %.

?: The ternary operator. a ? b : c can be thought of as: if a then b else c. a should be

of an integral type.

|| Logical or. De�ned on integral types.

&& Logical and. De�ned on integral types.

| Bitwise or. De�ned on integral types.

Chapter 9: Using GDB with Di�erent Languages 91

^ Bitwise exclusive-or. De�ned on integral types.

& Bitwise and. De�ned on integral types.

==, != Equality and inequality. De�ned on scalar types. The value of these expressions is 0

for false and non-zero for true.

<, >, <=, >=

Less than, greater than, less than or equal, greater than or equal. De�ned on scalar

types. The value of these expressions is 0 for false and non-zero for true.

<<, >> left shift, and right shift. De�ned on integral types.

@ The GDB \arti�cial array" operator (see Section 8.1 [Expressions], page 67).

+, - Addition and subtraction. De�ned on integral types,
oating-point types and pointer

types.

*, /, % Multiplication, division, and modulus. Multiplication and division are de�ned on inte-

gral and
oating-point types. Modulus is de�ned on integral types.

++, -- Increment and decrement. When appearing before a variable, the operation is per-

formed before the variable is used in an expression; when appearing after it, the vari-

able's value is used before the operation takes place.

* Pointer dereferencing. De�ned on pointer types. Same precedence as ++.

& Address operator. De�ned on variables. Same precedence as ++.

For debugging C++, GDB implements a use of `&' beyond what is allowed in the C++

language itself: you can use `&(&ref)' (or, if you prefer, simply `&&ref ') to examine the

address where a C++ reference variable (declared with `&ref ') is stored.

- Negative. De�ned on integral and
oating-point types. Same precedence as ++.

! Logical negation. De�ned on integral types. Same precedence as ++.

~ Bitwise complement operator. De�ned on integral types. Same precedence as ++.

., -> Structure member, and pointer-to-structure member. For convenience, GDB regards

the two as equivalent, choosing whether to dereference a pointer based on the stored

type information. De�ned on struct and union data.

.*, ->* Dereferences of pointers to members.

[] Array indexing. a[i] is de�ned as *(a+i). Same precedence as ->.

() Function parameter list. Same precedence as ->.

:: C++ scope resolution operator. De�ned on struct, union, and class types.

:: Doubled colons also represent the GDB scope operator (see Section 8.1 [Expressions],

page 67). Same precedence as ::, above.

92 Debugging with GDB (HP 9000 Systems)

If an operator is rede�ned in the user code, GDB usually attempts to invoke the rede�ned version

instead of using the operator's prede�ned meaning.

9.3.2 C and C++ constants

GDB allows you to express the constants of C and C++ in the following ways:

� Integer constants are a sequence of digits. Octal constants are speci�ed by a leading `0' (i.e.

zero), and hexadecimal constants by a leading `0x' or `0X'. Constants may also end with a

letter `l', specifying that the constant should be treated as a long value.

� Floating point constants are a sequence of digits, followed by a decimal point, followed by

a sequence of digits, and optionally followed by an exponent. An exponent is of the form:

`e[[+]|-]nnn', where nnn is another sequence of digits. The `+' is optional for positive exponents.

� Enumerated constants consist of enumerated identi�ers, or their integral equivalents.

� Character constants are a single character surrounded by single quotes ('), or a number|the

ordinal value of the corresponding character (usually its ASCII value). Within quotes, the

single character may be represented by a letter or by escape sequences, which are of the form

`\nnn', where nnn is the octal representation of the character's ordinal value; or of the form

`\x', where `x' is a prede�ned special character|for example, `\n' for newline.

� String constants are a sequence of character constants surrounded by double quotes (").

� Pointer constants are an integral value. You can also write pointers to constants using the C

operator `&'.

� Array constants are comma-separated lists surrounded by braces `{' and `}'; for example,

`{1,2,3}' is a three-element array of integers, `{{1,2}, {3,4}, {5,6}}' is a three-by-two

array, and `{&"hi", &"there", &"fred"}' is a three-element array of pointers.

9.3.3 C++ expressions

GDB expression handling can interpret most C++ expressions.

1. Member function calls are allowed; you can use expressions like

count = aml->GetOriginal(x, y)

2. While a member function is active (in the selected stack frame), your expressions have the

same namespace available as the member function; that is, GDB allows implicit references to

the class instance pointer this following the same rules as C++.

Chapter 9: Using GDB with Di�erent Languages 93

3. You can call overloaded functions; GDB resolves the function call to the right de�nition, with

some restrictions. GDB does not perform overload resolution involving user-de�ned type con-

versions, calls to constructors, or instantiations of templates that do not exist in the program.

It also cannot handle ellipsis argument lists or default arguments.

It does perform integral conversions and promotions,
oating-point promotions, arithmetic

conversions, pointer conversions, conversions of class objects to base classes, and standard

conversions such as those of functions or arrays to pointers; it requires an exact match on the

number of function arguments.

Overload resolution is always performed, unless you have speci�ed set overload-resolution

off. See Section 9.3.6 [GDB features for C++], page 94.

You must specifyset overload-resolution off in order to use an explicit function signature

to call an overloaded function, as in

p 'foo(char,int)'('x', 13)

The GDB command-completion facility can simplify this; see Section 3.2 [Command comple-

tion], page 18.

4. GDB understands variables declared as C++ references; you can use them in expressions just

as you do in C++ source|they are automatically dereferenced.

In the parameter list shown when GDB displays a frame, the values of reference variables are

not displayed (unlike other variables); this avoids clutter, since references are often used for

large structures. The address of a reference variable is always shown, unless you have speci�ed

`set print address off'.

5. GDB supports the C++ name resolution operator ::|your expressions can use it just as

expressions in your program do. Since one scope may be de�ned in another, you can use ::

repeatedly if necessary, for example in an expression like `scope1::scope2::name'. GDB also

allows resolving name scope by reference to source �les, in both C and C++ debugging (see

Section 8.2 [Program variables], page 68).

In addition, GDB supports calling virtual functions correctly, printing out virtual bases of

objects, calling functions in a base subobject, casting objects, and invoking user-de�ned operators.

9.3.4 C and C++ defaults

If you allow GDB to set the language automatically, it recognizes source �les whose names end

with `.c', `.C', or `.cc', and when GDB enters code compiled from one of these �les, it sets the

working language to C or C++. See Section 9.1.3 [Having GDB infer the source language], page 88,

for further details.

94 Debugging with GDB (HP 9000 Systems)

9.3.5 GDB and C

The set print union and show print union commands apply to the union type. When set to

`on', any union that is inside a struct or class is also printed. Otherwise, it appears as `{...}'.

The @ operator aids in the debugging of dynamic arrays, formed with pointers and a memory

allocation function. See Section 8.1 [Expressions], page 67.

9.3.6 GDB features for C++

Some GDB commands are particularly useful with C++, and some are designed speci�cally for

use with C++. Here is a summary:

breakpoint menus

When you want a breakpoint in a function whose name is overloaded, GDB break-

point menus help you specify which function de�nition you want. See Section 5.1.8

[Breakpoint menus], page 44.

rbreak regex

Setting breakpoints using regular expressions is helpful for setting breakpoints on over-

loaded functions that are not members of any special classes. See Section 5.1.1 [Setting

breakpoints], page 34.

catch throw

catch catch

Debug C++ exception handling using these commands. See Section 5.1.3 [Setting catch-

points], page 38.

ptype typename

Print inheritance relationships as well as other information for type typename. See

Chapter 10 [Examining the Symbol Table], page 99.

set print demangle

show print demangle

set print asm-demangle

show print asm-demangle

Control whether C++ symbols display in their source form, both when displaying code

as C++ source and when displaying disassemblies. See Section 8.7 [Print settings],

page 76.

Chapter 9: Using GDB with Di�erent Languages 95

set print object

show print object

Choose whether to print derived (actual) or declared types of objects. See Section 8.7

[Print settings], page 76.

set print vtbl

show print vtbl

Control the format for printing virtual function tables. See Section 8.7 [Print settings],

page 76. (The vtbl commands do not work on programs compiled with the HP ANSI

C++ compiler (aCC).)

set overload-resolution on

Enable overload resolution for C++ expression evaluation. The default is on. For

overloaded functions, GDB evaluates the arguments and searches for a function whose

signature matches the argument types, using the standard C++ conversion rules (see

Section 9.3.3 [C++ expressions], page 92 for details). If it cannot �nd a match, it emits

a message.

set overload-resolution off

Disable overload resolution for C++ expression evaluation. For overloaded functions

that are not class member functions, GDB chooses the �rst function of the speci�ed

name that it �nds in the symbol table, whether or not its arguments are of the correct

type. For overloaded functions that are class member functions, GDB searches for a

function whose signature exactly matches the argument types.

Overloaded symbol names

You can specify a particular de�nition of an overloaded symbol, using the same notation

that is used to declare such symbols in C++: type symbol(types) rather than just

symbol. You can also use the GDB command-line word completion facilities to list

the available choices, or to �nish the type list for you. See Section 3.2 [Command

completion], page 18, for details on how to do this.

9.3.7 GDB and Fortran

You can use GDB to debug programs written in Fortran. GDB does not distinguish between

Fortran 77 and Fortran 90 �les.

9.3.7.1 Fortran types

Fortran types supported:

96 Debugging with GDB (HP 9000 Systems)

integer*1, integer*2, integer*4, integer*8

logical*1, logical*2, logical*4, logical*8

byte

real*4, real*8, real*16

complex*8, complex*16

character*len, character*(*) [len is a user supplied length]

arrays (explicit-shape and assumed-size)

Array elements are displays in column-major order Use () for array member access

(e.g, arr(i) instead of arr[i]) Use "set print elements" to control the number of elements

printed out when specifying a whole array. The default is 200 elements or the number

of elements of the array, which ever is smaller.

9.3.7.2 Fortran operators

The following operators are supported. They are listed here in order of increasing precedence:

= Assignment

*, -, *, /

Binary operators

+, - Unary operators

** Exponentiation

.EQ., = Equal

.NE., /= Not equal, or concatenation

.LT., < Less than

.LE., <= Less than or equal to

.GT., > Greater than

.GE., >= Greater than or equal to

// Concatenation

.NOT. Logical negation

.AND. Logical AND

.OR. Logical OR

.EQV. Logical equivalence

Chapter 9: Using GDB with Di�erent Languages 97

.NEQV., .XOR.

Logical non-equivalence

Logical constants are represented as .TRUE. or .FALSE.

9.3.7.3 Using GDB with Fortran

GDB includes support for viewing Fortran common blocks.

info common

Lists common blocks visible in the current frame.

info common <common_block_name>

Lists values of variables in the named common block.

Fortran entry points are supported.

You can set a break point specifying an entry point name.

9.3.7.4 Fortran special issues

Fortran allows main to be a non-main procedure, therefore to set a breakpoint in the main

program, use break _MAIN_ or break <program_name>.

Do not use break main unless it is the name of a non-main procedure.

98 Debugging with GDB (HP 9000 Systems)

Chapter 10: Examining the Symbol Table 99

10 Examining the Symbol Table

The commands described in this section allow you to inquire about the symbols (names of

variables, functions and types) de�ned in your program. This information is inherent in the text

of your program and does not change as your program executes. GDB �nds it in your program's

symbol table, in the �le indicated when you started GDB (see Section 2.1.1 [Choosing �les], page 12),

or by one of the �le-management commands (see Section 12.1 [Commands to specify �les], page 109).

Occasionally, you may need to refer to symbols that contain unusual characters, which GDB

ordinarily treats as word delimiters. The most frequent case is in referring to static variables in

other source �les (see Section 8.2 [Program variables], page 68). File names are recorded in object

�les as debugging symbols, but GDB would ordinarily parse a typical �le name, like `foo.c', as

the three words `foo' `.' `c'. To allow GDB to recognize `foo.c' as a single symbol, enclose it in

single quotes; for example,

p 'foo.c'::x

looks up the value of x in the scope of the �le `foo.c'.

info address symbol

Describe where the data for symbol is stored. For a register variable, this says which

register it is kept in. For a non-register local variable, this prints the stack-frame o�set

at which the variable is always stored.

Note the contrast with `print &symbol', which does not work at all for a register vari-

able, and for a stack local variable prints the exact address of the current instantiation

of the variable.

whatis exp

Print the data type of expression exp. exp is not actually evaluated, and any side-

e�ecting operations (such as assignments or function calls) inside it do not take place.

See Section 8.1 [Expressions], page 67.

whatis Print the data type of $, the last value in the value history.

ptype typename

Print a description of data type typename. typename may be the name of a type,

or for C code it may have the form `class class-name', `struct struct-tag ', `union

union-tag ' or `enum enum-tag '.

ptype exp

100 Debugging with GDB (HP 9000 Systems)

ptype Print a description of the type of expression exp. ptype di�ers from whatis by printing

a detailed description, instead of just the name of the type.

For example, for this variable declaration:

struct complex {double real; double imag;} v;

the two commands give this output:

(gdb) whatis v

type = struct complex

(gdb) ptype v

type = struct complex {

double real;

double imag;

}

As with whatis, using ptype without an argument refers to the type of $, the last

value in the value history.

info types regexp

info types

Print a brief description of all types whose name matches regexp (or all types in your

program, if you supply no argument). Each complete typename is matched as though

it were a complete line; thus, `i type value' gives information on all types in your

program whose name includes the string value, but `i type ^value$' gives information

only on types whose complete name is value.

This command di�ers from ptype in two ways: �rst, like whatis, it does not print a

detailed description; second, it lists all source �les where a type is de�ned.

info source

Show the name of the current source �le|that is, the source �le for the function

containing the current point of execution|and the language it was written in.

info sources

Print the names of all source �les in your program for which there is debugging infor-

mation, organized into two lists: �les whose symbols have already been read, and �les

whose symbols will be read when needed.

info functions

Print the names and data types of all de�ned functions.

info functions regexp

Print the names and data types of all de�ned functions whose names contain a match

for regular expression regexp. Thus, `info fun step' �nds all functions whose names

include step; `info fun ^step' �nds those whose names start with step.

Chapter 10: Examining the Symbol Table 101

info variables

Print the names and data types of all variables that are declared outside of functions

(i.e., excluding local variables).

info variables regexp

Print the names and data types of all variables (except for local variables) whose names

contain a match for regular expression regexp.

set opaque-type-resolution on

Tell GDB to resolve opaque types. An opaque type is a type declared as a pointer to a

struct, class, or union|for example, struct MyType *|that is used in one source

�le although the full declaration of struct MyType is in another source �le. The default

is on.

A change in the setting of this subcommand will not take e�ect until the next time

symbols for a �le are loaded.

set opaque-type-resolution off

Tell GDB not to resolve opaque types. In this case, the type is printed as follows:

{<no data fields>}

show opaque-type-resolution

Show whether opaque types are resolved or not.

maint print symbols �lename

maint print psymbols �lename

maint print msymbols �lename

Write a dump of debugging symbol data into the �le �lename. These commands are

used to debug the GDB symbol-reading code. Only symbols with debugging data are

included. If you use `maint print symbols', GDB includes all the symbols for which

it has already collected full details: that is, �lename re
ects symbols for only those

�les whose symbols GDB has read. You can use the command info sources to �nd

out which �les these are. If you use `maint print psymbols' instead, the dump shows

information about symbols that GDB only knows partially|that is, symbols de�ned

in �les that GDB has skimmed, but not yet read completely. Finally, `maint print

msymbols' dumps just the minimal symbol information required for each object �le

from which GDB has read some symbols. See Section 12.1 [Commands to specify �les],

page 109, for a discussion of how GDB reads symbols (in the description of symbol-

file).

102 Debugging with GDB (HP 9000 Systems)

Chapter 11: Altering Execution 103

11 Altering Execution

Once you think you have found an error in your program, you might want to �nd out for certain

whether correcting the apparent error would lead to correct results in the rest of the run. You can

�nd the answer by experiment, using the GDB features for altering execution of the program.

For example, you can store new values into variables or memory locations, give your program a

signal, restart it at a di�erent address, or even return prematurely from a function.

11.1 Assignment to variables

To alter the value of a variable, evaluate an assignment expression. See Section 8.1 [Expressions],

page 67. For example,

print x=4

stores the value 4 into the variable x, and then prints the value of the assignment expression (which

is 4). See Chapter 9 [Using GDB with Di�erent Languages], page 87, for more information on

operators in supported languages.

If you are not interested in seeing the value of the assignment, use the set command instead

of the print command. set is really the same as print except that the expression's value is not

printed and is not put in the value history (see Section 8.8 [Value history], page 81). The expression

is evaluated only for its e�ects.

Because the set command has many subcommands that can con
ict with the names of program

variables, it is a good idea to use the set variable command instead of just set. For example, if

your program has a variable g, you run into problems if you try to set a new value with just `set

g=4', because GDB has the command set gnutarget, abbreviated set g:

104 Debugging with GDB (HP 9000 Systems)

(gdb) whatis g

type = double

(gdb) p g

$1 = 1

(gdb) set g=4

(gdb) p g

$2 = 1

(gdb) r

The program being debugged has been started already.

Start it from the beginning? (y or n) y

Starting program: /home/smith/cc_progs/a.out

"/home/smith/cc_progs/a.out": can't open to read symbols: Invalid bfd target.

(gdb) show g

The current BFD target is "=4".

The program variable g did not change, and you silently set the gnutarget to an invalid value. In

order to set the variable g, use

(gdb) set var g=4

GDB allows more implicit conversions in assignments than C; you can freely store an integer

value into a pointer variable or vice versa, and you can convert any structure to any other structure

that is the same length or shorter.

To store values into arbitrary places in memory, use the `{. . .}' construct to generate a value

of speci�ed type at a speci�ed address (see Section 8.1 [Expressions], page 67). For example,

{int}0x83040 refers to memory location 0x83040 as an integer (which implies a certain size and

representation in memory), and

set {int}0x83040 = 4

stores the value 4 into that memory location.

11.2 Continuing at a di�erent address

Ordinarily, when you continue your program, you do so at the place where it stopped, with

the continue command. You can instead continue at an address of your own choosing, with the

following commands:

Chapter 11: Altering Execution 105

jump linespec

Resume execution at line linespec. Execution stops again immediately if there is a

breakpoint there. See Section 7.1 [Printing source lines], page 59, for a description of

the di�erent forms of linespec. It is common practice to use the tbreak command in

conjunction with jump. See Section 5.1.1 [Setting breakpoints], page 34.

The jump command does not change the current stack frame, or the stack pointer, or

the contents of any memory location or any register other than the program counter.

If line linespec is in a di�erent function from the one currently executing, the results

may be bizarre if the two functions expect di�erent patterns of arguments or of local

variables. For this reason, the jump command requests con�rmation if the speci�ed line

is not in the function currently executing. However, even bizarre results are predictable

if you are well acquainted with the machine-language code of your program.

jump *address

Resume execution at the instruction at address address.

The most common occasion to use the jump command is to back up|perhaps with more break-

points set|over a portion of a program that has already executed, in order to examine its execution

in more detail.

11.3 Giving your program a signal

signal signal

Resume execution where your program stopped, but immediately give it the signal

signal. signal can be the name or the number of a signal. For example, on many

systems signal 2 and signal SIGINT are both ways of sending an interrupt signal.

Alternatively, if signal is zero, continue execution without giving a signal. This is useful

when your program stopped on account of a signal and would ordinary see the signal

when resumed with the continue command; `signal 0' causes it to resume without a

signal.

signal does not repeat when you press RET a second time after executing the command.

Invoking the signal command is not the same as invoking the kill utility from the shell.

Sending a signal with kill causes GDB to decide what to do with the signal depending on the

signal handling tables (see Section 5.3 [Signals], page 48). The signal command passes the signal

directly to your program.

106 Debugging with GDB (HP 9000 Systems)

11.4 Returning from a function

return

return expression

You can cancel execution of a function call with the return command. If you give an

expression argument, its value is used as the function's return value.

When you use return, GDB discards the selected stack frame (and all frames within it). You

can think of this as making the discarded frame return prematurely. If you wish to specify a value

to be returned, give that value as the argument to return.

This pops the selected stack frame (see Section 6.3 [Selecting a frame], page 55), and any other

frames inside of it, leaving its caller as the innermost remaining frame. That frame becomes selected.

The speci�ed value is stored in the registers used for returning values of functions.

The return command does not resume execution; it leaves the program stopped in the state that

would exist if the function had just returned. In contrast, the finish command (see Section 5.2

[Continuing and stepping], page 45) resumes execution until the selected stack frame returns nat-

urally.

11.5 Calling program functions

call expr Evaluate the expression expr without displaying void returned values.

You can use this variant of the print command if you want to execute a function from your

program, but without cluttering the output with void returned values. If the result is not void, it

is printed and saved in the value history.

11.6 Patching programs

By default, GDB opens the �le containing your program's executable code (or the core�le)

read-only. This prevents accidental alterations to machine code; but it also prevents you from

intentionally patching your program's binary.

Chapter 11: Altering Execution 107

If you'd like to be able to patch the binary, you can specify that explicitly with the set write

command. For example, you might want to turn on internal debugging
ags, or even to make

emergency repairs.

set write on

set write off

If you specify `set write on', GDB opens executable and core �les for both reading

and writing; if you specify `set write off' (the default), GDB opens them read-only.

If you have already loaded a �le, you must load it again (using the exec-file or

core-file command) after changing set write, for your new setting to take e�ect.

show write

Display whether executable �les and core �les are opened for writing as well as reading.

108 Debugging with GDB (HP 9000 Systems)

Chapter 12: GDB Files 109

12 GDBFiles

GDB needs to know the �le name of the program to be debugged, both in order to read its

symbol table and in order to start your program. To debug a core dump of a previous run, you

must also tell GDB the name of the core dump �le.

12.1 Commands to specify �les

You may want to specify executable and core dump �le names. The usual way to do this is at

start-up time, using the arguments to GDB's start-up commands (see Chapter 2 [Getting In and

Out of GDB], page 11).

Occasionally it is necessary to change to a di�erent �le during a GDB session. Or you may run

GDB and forget to specify a �le you want to use. In these situations the GDB commands to specify

new �les are useful.

file �lename

Use �lename as the program to be debugged. It is read for its symbols and for the

contents of pure memory. It is also the program executed when you use the run

command. If you do not specify a directory and the �le is not found in the GDB

working directory, GDB uses the environment variable PATH as a list of directories to

search, just as the shell does when looking for a program to run. You can change the

value of this variable, for both GDB and your program, using the path command.

file file with no argument makes GDB discard any information it has on both executable

�le and the symbol table.

exec-file [�lename]

Specify that the program to be run (but not the symbol table) is found in �lename.

GDB searches the environment variable PATH if necessary to locate your program.

Omitting �lename means to discard information on the executable �le.

symbol-file [�lename]

Read symbol table information from �le �lename. PATH is searched when necessary.

Use the file command to get both symbol table and program to run from the same

�le.

symbol-file with no argument clears out GDB information on your program's symbol

table.

110 Debugging with GDB (HP 9000 Systems)

The symbol-file command causes GDB to forget the contents of its convenience

variables, the value history, and all breakpoints and auto-display expressions. This is

because they may contain pointers to the internal data recording symbols and data

types, which are part of the old symbol table data being discarded inside GDB.

symbol-file does not repeat if you press RET again after executing it once.

When GDB is con�gured for a particular environment, it understands debugging infor-

mation in whatever format is the standard generated for that environment; you may

use either a gnu compiler, or other compilers that adhere to the local conventions.

The symbol-file command does not normally read the symbol table in full right away.

Instead, it scans the symbol table quickly to �nd which source �les and which symbols

are present. The details are read later, one source �le at a time, as they are needed.

The purpose of this two-stage reading strategy is to make GDB start up faster. For

the most part, it is invisible except for occasional pauses while the symbol table details

for a particular source �le are being read. (The set verbose command can turn these

pauses into messages if desired. See Section 14.6 [Optional warnings and messages],

page 123.)

core-file [�lename]

Specify the whereabouts of a core dump �le to be used as the \contents of memory".

Traditionally, core �les contain only some parts of the address space of the process that

generated them; GDB can access the executable �le itself for other parts.

core-file with no argument speci�es that no core �le is to be used.

Note that the core �le is ignored when your program is actually running under GDB.

So, if you have been running your program and you wish to debug a core �le instead,

you must kill the subprocess in which the program is running. To do this, use the kill

command (see Section 4.8 [Killing the child process], page 29).

info files

info target

info files and info target are synonymous; both print the current target (see Chap-

ter 13 [Specifying a Debugging Target], page 115), including the names of the executable

and core dump �les currently in use by GDB, and the �les from which symbols were

loaded. The command help target lists all possible targets rather than current ones.

All �le-specifying commands allow both absolute and relative �le names as arguments. GDB

always converts the �le name to an absolute �le name and remembers it that way.

GDB supports HP-UX shared libraries. GDB automatically loads symbol de�nitions from shared

libraries when you use the run command, or when you examine a core �le. (Before you issue the run

command, GDB does not understand references to a function in a shared library, however|unless

Chapter 12: GDB Files 111

you are debugging a core �le). If the program loads a library explicitly, GDB automatically loads

the symbols at the time of the shl_load call. See Section 5.4.1 [Stopping and starting in shared

libraries], page 50, for more information.

info share

info sharedlibrary

Print the names of the shared libraries which are currently loaded.

sharedlibrary regex

share regex

Load shared object library symbols for �les matching a Unix regular expression. As

with �les loaded automatically, it only loads shared libraries required by your program

for a core �le or after typing run. If regex is omitted all shared libraries required by

your program are loaded.

GDB detects the loading of a shared library and automatically reads in symbols from the newly

loaded library, up to a threshold that is initially set but that you can modify if you wish.

Beyond that threshold, symbols from shared libraries must be explicitly loaded. To load these

symbols, use the command sharedlibrary �lename. The base address of the shared library is

determined automatically by GDB and need not be speci�ed.

To display or set the threshold, use the commands:

set auto-solib-add threshold

Set the autoloading size threshold, in megabytes. If threshold is nonzero, symbols

from all shared object libraries will be loaded automatically when the inferior begins

execution or when the dynamic linker informs GDB that a new library has been loaded,

until the symbol table of the program and libraries exceeds this threshold. Otherwise,

symbols must be loaded manually, using the sharedlibrary command. The default

threshold is 100 megabytes.

show auto-solib-add

Display the current autoloading size threshold, in megabytes.

12.2 Errors reading symbol �les

While reading a symbol �le, GDB occasionally encounters problems, such as symbol types it

does not recognize, or known bugs in compiler output. By default, GDB does not notify you of

112 Debugging with GDB (HP 9000 Systems)

such problems, since they are relatively common and primarily of interest to people debugging

compilers. If you are interested in seeing information about ill-constructed symbol tables, you can

either ask GDB to print only one message about each such type of problem, no matter how many

times the problem occurs; or you can ask GDB to print more messages, to see how many times

the problems occur, with the set complaints command (see Section 14.6 [Optional warnings and

messages], page 123).

The messages currently printed, and their meanings, include:

inner block not inside outer block in symbol

The symbol information shows where symbol scopes begin and end (such as at the start

of a function or a block of statements). This error indicates that an inner scope block

is not fully contained in its outer scope blocks.

GDB circumvents the problem by treating the inner block as if it had the same scope

as the outer block. In the error message, symbol may be shown as \(don't know)" if

the outer block is not a function.

block at address out of order

The symbol information for symbol scope blocks should occur in order of increasing

addresses. This error indicates that it does not do so.

GDB does not circumvent this problem, and has trouble locating symbols in the source

�le whose symbols it is reading. (You can often determine what source �le is a�ected

by specifying set verbose on. See Section 14.6 [Optional warnings and messages],

page 123.)

bad block start address patched

The symbol information for a symbol scope block has a start address smaller than the

address of the preceding source line. This is known to occur in the SunOS 4.1.1 (and

earlier) C compiler.

GDB circumvents the problem by treating the symbol scope block as starting on the

previous source line.

bad string table offset in symbol n

Symbol number n contains a pointer into the string table which is larger than the size

of the string table.

GDB circumvents the problem by considering the symbol to have the name foo, which

may cause other problems if many symbols end up with this name.

unknown symbol type 0xnn

The symbol information contains new data types that GDB does not yet know how to

read. 0xnn is the symbol type of the misunderstood information, in hexadecimal.

Chapter 12: GDB Files 113

GDB circumvents the error by ignoring this symbol information. This usually allows

you to debug your program, though certain symbols are not accessible. If you encounter

such a problem and feel like debugging it, you can debug gdb with itself, breakpoint

on complain, then go up to the function read_dbx_symtab and examine *bufp to see

the symbol.

stub type has NULL name

GDB could not �nd the full de�nition for a struct or class.

const/volatile indicator missing (ok if using g++ v1.x), got. . .

The symbol information for a C++ member function is missing some information that

recent versions of the compiler should have output for it.

info mismatch between compiler and debugger

GDB could not parse a type speci�cation output by the compiler.

114 Debugging with GDB (HP 9000 Systems)

Chapter 13: Specifying a Debugging Target 115

13 Specifying a DebuggingTarget

A target is the execution environment occupied by your program. On HP-UX systems, GDB

has been con�gured to support debugging of processes running on the PA-RISC architecture. This

means that the only possible targets are:

� An executable that has been compiled and linked to run on HP-UX

� A live HP-UX process, either started by GDB (with the run command) or started outside of

GDB and attached to (with the attach command)

� A core �le generated by an HP-UX process that previously aborted execution

GDB on HP-UX has not been con�gured to support remote debugging, or to support programs

running on other platforms. You can use the target command to specify one of the target types

con�gured for GDB (see Section 13.2 [Commands for managing targets], page 116).

13.1 Active targets

There are three classes of targets: processes, core �les, and executable �les. GDB can work

concurrently on up to three active targets, one in each class. This allows you to (for example) start

a process and inspect its activity without abandoning your work on a core �le.

For example, if you execute `gdb a.out', then the executable �le a.out is the only active target.

If you designate a core �le as well|presumably from a prior run that crashed and coredumped|

then GDB has two active targets and uses them in tandem, looking �rst in the core�le target, then

in the executable �le, to satisfy requests for memory addresses. (Typically, these two classes of

target are complementary, since core �les contain only a program's read-write memory|variables

and so on|plus machine status, while executable �les contain only the program text and initialized

data.)

When you type run, your executable �le becomes an active process target as well. When a

process target is active, all GDB commands requesting memory addresses refer to that target;

addresses in an active core �le or executable �le target are obscured while the process target is

active.

Use the core-file and exec-file commands to select a new core �le or executable target

(see Section 12.1 [Commands to specify �les], page 109). To specify as a target a process that is

116 Debugging with GDB (HP 9000 Systems)

already running, use the attach command (see Section 4.7 [Debugging an already-running process],

page 28).

13.2 Commands for managing targets

target type parameters

Connects the GDB host environment to a target machine or process. A target is

typically a protocol for talking to debugging facilities. You use the argument type to

specify the type or protocol of the target machine.

Further parameters are interpreted by the target protocol, but typically include things

like device names or host names to connect with, process numbers, and baud rates.

The target command does not repeat if you press RET again after executing the com-

mand.

help target

Displays the names of all targets available. To display targets currently selected,

use either info target or info files (see Section 12.1 [Commands to specify �les],

page 109).

help target name

Describe a particular target, including any parameters necessary to select it.

set gnutarget args

GDB uses its own library BFD to read your �les. GDB knows whether it is reading an

executable, a core, or a .o �le; however, you can specify the �le format with the set

gnutarget command. Unlike most target commands, with gnutarget the target

refers to a program, not a machine.

Warning: To specify a �le format with set gnutarget, you must know the actual BFD

name.

See Section 12.1 [Commands to specify �les], page 109.

show gnutarget

Use the show gnutarget command to display what �le format gnutarget is set to

read. If you have not set gnutarget, GDB will determine the �le format for each �le

automatically, and show gnutarget displays `The current BDF target is "auto"'.

These are the valid targets on HP-UX systems:

target exec program

An executable �le. `target exec program' is the same as `exec-file program'.

Chapter 13: Specifying a Debugging Target 117

target core �lename

A core dump �le. `target core �lename' is the same as `core-file �lename'.

118 Debugging with GDB (HP 9000 Systems)

Chapter 14: Controlling GDB 119

14 ControllingGDB

You can alter the way GDB interacts with you by using the set command. For commands

controlling how GDB displays data, see Section 8.7 [Print settings], page 76; other settings are

described here.

14.1 Prompt

GDB indicates its readiness to read a command by printing a string called the prompt. This

string is normally `(gdb)'. You can change the prompt string with the set prompt command. For

instance, when debugging GDB with GDB, it is useful to change the prompt in one of the GDB

sessions so that you can always tell which one you are talking to.

Note: set prompt no longer adds a space for you after the prompt you set. This allows you to

set a prompt which ends in a space or a prompt that does not.

set prompt newprompt

Directs GDB to use newprompt as its prompt string henceforth.

show prompt

Prints a line of the form: `Gdb's prompt is: your-prompt'

14.2 Command editing

GDB reads its input commands via the readline interface. This gnu library provides consistent

behavior for programs which provide a command line interface to the user. Advantages are gnu

Emacs-style or vi-style inline editing of commands, csh-like history substitution, and a storage and

recall of command history across debugging sessions.

You may control the behavior of command line editing in GDB with the command set.

set editing

set editing on

Enable command line editing (enabled by default).

120 Debugging with GDB (HP 9000 Systems)

set editing off

Disable command line editing.

show editing

Show whether command line editing is enabled.

14.3 Command history

GDB can keep track of the commands you type during your debugging sessions, so that you

can be certain of precisely what happened. Use these commands to manage the GDB command

history facility.

set history filename fname

Set the name of the GDB command history �le to fname. This is the �le where GDB

reads an initial command history list, and where it writes the command history from

this session when it exits. You can access this list through history expansion or through

the history command editing characters listed below. This �le defaults to the value of

the environment variable GDBHISTFILE, or to `./.gdb_history' if this variable is not

set.

set history save

set history save on

Record command history in a �le, whose name may be speci�ed with the set history

filename command. By default, this option is disabled.

set history save off

Stop recording command history in a �le.

set history size size

Set the number of commands which GDB keeps in its history list. This defaults to the

value of the environment variable HISTSIZE, or to 256 if this variable is not set.

To make command history understand your vi key bindings you need to create a `~/.inputrc'

�le with the following contents:

set editing-mode vi

The readline interface uses the `.inputrc' �le to control the settings.

History expansion assigns special meaning to the character !.

Chapter 14: Controlling GDB 121

Since ! is also the logical not operator in C, history expansion is o� by default. If you decide to

enable history expansion with the set history expansion on command, you may sometimes need

to follow ! (when it is used as logical not, in an expression) with a space or a tab to prevent it from

being expanded. The readline history facilities do not attempt substitution on the strings != and

!(, even when history expansion is enabled.

The commands to control history expansion are:

set history expansion on

set history expansion

Enable history expansion. History expansion is o� by default.

set history expansion off

Disable history expansion.

The readline code comes with more complete documentation of editing and history

expansion features. Users unfamiliar with gnu Emacs or vi may wish to read it.

show history

show history filename

show history save

show history size

show history expansion

These commands display the state of the GDB history parameters. show history by

itself displays all four states.

show commands

Display the last ten commands in the command history.

show commands n

Print ten commands centered on command number n.

show commands +

Print ten commands just after the commands last printed.

14.4 Screen size

Certain commands to GDB may produce large amounts of information output to the screen. To

help you read all of it, GDB pauses and asks you for input at the end of each page of output. Type

RET when you want to continue the output, or q to discard the remaining output. Also, the screen

width setting determines when to wrap lines of output. Depending on what is being printed, GDB

122 Debugging with GDB (HP 9000 Systems)

tries to break the line at a readable place, rather than simply letting it over
ow onto the following

line.

Normally GDB knows the size of the screen from the termcap data base together with the value

of the TERM environment variable and the stty rows and stty cols settings. If this is not correct,

you can override it with the set height and set width commands:

set height lpp

show height

set width cpl

show width

These set commands specify a screen height of lpp lines and a screen width of cpl

characters. The associated show commands display the current settings.

If you specify a height of zero lines, GDB does not pause during output no matter how

long the output is. This is useful if output is to a �le or to an editor bu�er.

Likewise, you can specify `set width 0' to prevent GDB from wrapping its output.

14.5 Numbers

You can always enter numbers in octal, decimal, or hexadecimal in GDB by the usual conven-

tions: octal numbers begin with `0', decimal numbers end with `.', and hexadecimal numbers begin

with `0x'. Numbers that begin with none of these are, by default, entered in base 10; likewise, the

default display for numbers|when no particular format is speci�ed|is base 10. You can change

the default base for both input and output with the set radix command.

set input-radix base

Set the default base for numeric input. Supported choices for base are decimal 8, 10,

or 16. base must itself be speci�ed either unambiguously or using the current default

radix; for example, any of

set radix 012

set radix 10.

set radix 0xa

sets the base to decimal. On the other hand, `set radix 10' leaves the radix unchanged

no matter what it was.

set output-radix base

Set the default base for numeric display. Supported choices for base are decimal 8, 10,

or 16. base must itself be speci�ed either unambiguously or using the current default

radix.

Chapter 14: Controlling GDB 123

show input-radix

Display the current default base for numeric input.

show output-radix

Display the current default base for numeric display.

14.6 Optional warnings and messages

By default, GDB is silent about its inner workings. If you are running on a slow machine, you

may want to use the set verbose command. This makes GDB tell you when it does a lengthy

internal operation, so you will not think it has crashed.

Currently, the messages controlled by set verbose are those which announce that the symbol

table for a source �le is being read; see symbol-file in Section 12.1 [Commands to specify �les],

page 109.

set verbose on

Enables GDB output of certain informational messages.

set verbose off

Disables GDB output of certain informational messages.

show verbose

Displays whether set verbose is on or o�.

By default, if GDB encounters bugs in the symbol table of an object �le, it is silent; but if you

are debugging a compiler, you may �nd this information useful (see Section 12.2 [Errors reading

symbol �les], page 111).

set complaints limit

Permits GDB to output limit complaints about each type of unusual symbols before

becoming silent about the problem. Set limit to zero to suppress all complaints; set it

to a large number to prevent complaints from being suppressed.

show complaints

Displays how many symbol complaints GDB is permitted to produce.

By default, GDB is cautious, and asks what sometimes seems to be a lot of stupid questions to

con�rm certain commands. For example, if you try to run a program which is already running:

124 Debugging with GDB (HP 9000 Systems)

(gdb) run

The program being debugged has been started already.

Start it from the beginning? (y or n)

If you are willing to un
inchingly face the consequences of your own commands, you can disable

this \feature":

set confirm off

Disables con�rmation requests.

set confirm on

Enables con�rmation requests (the default).

show confirm

Displays state of con�rmation requests.

Chapter 15: Canned Sequences of Commands 125

15 Canned Sequences of Commands

Aside from breakpoint commands (see Section 5.1.7 [Breakpoint command lists], page 43), GDB

provides two ways to store sequences of commands for execution as a unit: user-de�ned commands

and command �les.

15.1 User-de�ned commands

A user-de�ned command is a sequence of GDB commands to which you assign a new name as a

command. This is done with the define command. User commands may accept up to 10 arguments

separated by whitespace. Arguments are accessed within the user command via $arg0. . .$arg9. A

trivial example:

define adder

print $arg0 + $arg1 + $arg2

To execute the command use:

adder 1 2 3

This de�nes the command adder, which prints the sum of its three arguments. Note the arguments

are text substitutions, so they may reference variables, use complex expressions, or even perform

inferior functions calls.

define commandname

De�ne a command named commandname. If there is already a command by that name,

you are asked to con�rm that you want to rede�ne it.

The de�nition of the command is made up of other GDB command lines, which are

given following the define command. The end of these commands is marked by a line

containing end.

if Takes a single argument, which is an expression to evaluate. It is followed by a series of

commands that are executed only if the expression is true (nonzero). There can then

optionally be a line else, followed by a series of commands that are only executed if

the expression was false. The end of the list is marked by a line containing end.

while The syntax is similar to if: the command takes a single argument, which is an ex-

pression to evaluate, and must be followed by the commands to execute, one per line,

126 Debugging with GDB (HP 9000 Systems)

terminated by an end. The commands are executed repeatedly as long as the expression

evaluates to true.

document commandname

Document the user-de�ned command commandname, so that it can be accessed by

help. The command commandname must already be de�ned. This command reads

lines of documentation just as define reads the lines of the command de�nition, ending

with end. After the document command is �nished, help on command commandname

displays the documentation you have written.

You may use the document command again to change the documentation of a command.

Rede�ning the command with define does not change the documentation.

help user-defined

List all user-de�ned commands, with the �rst line of the documentation (if any) for

each.

show user

show user commandname

Display the GDB commands used to de�ne commandname (but not its documentation).

If no commandname is given, display the de�nitions for all user-de�ned commands.

When user-de�ned commands are executed, the commands of the de�nition are not printed. An

error in any command stops execution of the user-de�ned command.

If used interactively, commands that would ask for con�rmation proceed without asking when

used inside a user-de�ned command. Many GDB commands that normally print messages to say

what they are doing omit the messages when used in a user-de�ned command.

15.2 User-de�ned command hooks

You may de�ne hooks, which are a special kind of user-de�ned command. Whenever you run the

command `foo', if the user-de�ned command `hook-foo' exists, it is executed (with no arguments)

before that command.

In addition, a pseudo-command, `stop' exists. De�ning (`hook-stop') makes the associated

commands execute every time execution stops in your program: before breakpoint commands are

run, displays are printed, or the stack frame is printed.

For example, to ignore SIGALRM signals while single-stepping, but treat them normally during

normal execution, you could de�ne:

Chapter 15: Canned Sequences of Commands 127

define hook-stop

handle SIGALRM nopass

end

define hook-run

handle SIGALRM pass

end

define hook-continue

handle SIGLARM pass

end

You can de�ne a hook for any single-word command in GDB, but not for command aliases; you

should de�ne a hook for the basic command name, e.g. backtrace rather than bt. If an error

occurs during the execution of your hook, execution of GDB commands stops and GDB issues a

prompt (before the command that you actually typed had a chance to run).

If you try to de�ne a hook which does not match any known command, you get a warning from

the define command.

15.3 Command �les

A command �le for GDB is a �le of lines that are GDB commands. Comments (lines starting

with #) may also be included. An empty line in a command �le does nothing; it does not mean to

repeat the last command, as it would from the terminal.

When you start GDB, it automatically executes commands from its init �les. These are �les

named `.gdbinit'. GDB reads the init �le (if any) in your home directory, then processes command

line options and operands, and then reads the init �le (if any) in the current working directory.

This is so the init �le in your home directory can set options (such as set complaints) which a�ect

the processing of the command line options and operands. The init �les are not executed if you

use the `-nx' option; see Section 2.1.2 [Choosing modes], page 13.

You can also request the execution of a command �le with the source command:

source �lename

Execute the command �le �lename.

128 Debugging with GDB (HP 9000 Systems)

The lines in a command �le are executed sequentially. They are not printed as they are executed.

An error in any command terminates execution of the command �le.

Commands that would ask for con�rmation if used interactively proceed without asking when

used in a command �le. Many GDB commands that normally print messages to say what they are

doing omit the messages when called from command �les.

15.4 Commands for controlled output

During the execution of a command �le or a user-de�ned command, normal GDB output is

suppressed; the only output that appears is what is explicitly printed by the commands in the

de�nition. This section describes three commands useful for generating exactly the output you

want.

echo text Print text. Nonprinting characters can be included in text using C escape sequences,

such as `\n' to print a newline. No newline is printed unless you specify one. In

addition to the standard C escape sequences, a backslash followed by a space stands

for a space. This is useful for displaying a string with spaces at the beginning or the

end, since leading and trailing spaces are otherwise trimmed from all arguments. To

print ` and foo = ', use the command `echo \ and foo = \ '.

A backslash at the end of text can be used, as in C, to continue the command onto

subsequent lines. For example,

echo This is some text\n\

which is continued\n\

onto several lines.\n

produces the same output as

echo This is some text\n

echo which is continued\n

echo onto several lines.\n

output expression

Print the value of expression and nothing but that value: no newlines, no `$nn = '. The

value is not entered in the value history either. See Section 8.1 [Expressions], page 67,

for more information on expressions.

output/fmt expression

Print the value of expression in format fmt. You can use the same formats as for print.

See Section 8.4 [Output formats], page 71, for more information.

Chapter 15: Canned Sequences of Commands 129

printf string, expressions. . .

Print the values of the expressions under the control of string. The expressions are

separated by commas and may be either numbers or pointers. Their values are printed

as speci�ed by string, exactly as if your program were to execute the C subroutine

printf (string, expressions. . .);

For example, you can print two values in hex like this:

printf "foo, bar-foo = 0x%x, 0x%x\n", foo, bar-foo

The only backslash-escape sequences that you can use in the format string are the

simple ones that consist of backslash followed by a letter.

130 Debugging with GDB (HP 9000 Systems)

Chapter 16: Using GDB under gnu Emacs 131

16 UsingGDBunder gnuEmacs

A special interface allows you to use gnu Emacs to view (and edit) the source �les for the

program you are debugging with GDB.

To use this interface, use the command M-x gdb in Emacs. Give the executable �le you want

to debug as an argument. This command starts GDB as a subprocess of Emacs, with input and

output through a newly created Emacs bu�er. (Do not use the -tui option to run GDB from

Emacs.)

Using GDB under Emacs is just like using GDB normally except for two things:

� All \terminal" input and output goes through the Emacs bu�er.

This applies both to GDB commands and their output, and to the input and output done by

the program you are debugging.

This is useful because it means that you can copy the text of previous commands and input

them again; you can even use parts of the output in this way.

All the facilities of Emacs' Shell mode are available for interacting with your program. In

particular, you can send signals the usual way|for example, C-c C-c for an interrupt, C-c C-z for

a stop.

� GDB displays source code through Emacs.

Each time GDB displays a stack frame, Emacs automatically �nds the source �le for that frame

and puts an arrow (`=>') at the left margin of the current line. Emacs uses a separate bu�er for

source display, and splits the screen to show both your GDB session and the source.

Explicit GDB list or search commands still produce output as usual, but you probably have

no reason to use them from Emacs.

Warning: If the directory where your program resides is not your current directory, it
can be easy to confuse Emacs about the location of the source �les, in which case the
auxiliary display bu�er does not appear to show your source. GDB can �nd programs
by searching your environment's PATH variable, so the GDB input and output session
proceeds normally; but Emacs does not get enough information back from GDB to

132 Debugging with GDB (HP 9000 Systems)

locate the source �les in this situation. To avoid this problem, either start GDB mode
from the directory where your program resides, or specify an absolute �le name when
prompted for the M-x gdb argument.

A similar confusion can result if you use the GDB file command to switch to debugging
a program in some other location, from an existing GDB bu�er in Emacs.

By default, M-x gdb calls the program called `gdb'. If you need to call GDB by a di�erent

name (for example, if you keep several con�gurations around, with di�erent names) you can set

the Emacs variable gdb-command-name; for example,

(setq gdb-command-name "mygdb")

(preceded by ESC ESC, or typed in the *scratch* bu�er, or in your `.emacs' �le) makes Emacs call

the program named \mygdb" instead.

In the GDB I/O bu�er, you can use these special Emacs commands in addition to the standard

Shell mode commands:

C-h m Describe the features of Emacs' GDB Mode.

M-s Execute to another source line, like the GDB step command; also update the display

window to show the current �le and location.

M-n Execute to next source line in this function, skipping all function calls, like the GDB

next command. Then update the display window to show the current �le and location.

M-i Execute one instruction, like the GDB stepi command; update display window ac-

cordingly.

M-x gdb-nexti

Execute to next instruction, using the GDB nexti command; update display window

accordingly.

C-c C-f Execute until exit from the selected stack frame, like the GDB finish command.

M-c Continue execution of your program, like the GDB continue command.

Warning: In Emacs v19, this command is C-c C-p.

M-u Go up the number of frames indicated by the numeric argument (see section \Numeric

Arguments" in The gnu Emacs Manual), like the GDB up command.

Warning: In Emacs v19, this command is C-c C-u.

Chapter 16: Using GDB under gnu Emacs 133

M-d Go down the number of frames indicated by the numeric argument, like the GDB down

command.

Warning: In Emacs v19, this command is C-c C-d.

C-x & Read the number where the cursor is positioned, and insert it at the end of the GDB

I/O bu�er. For example, if you wish to disassemble code around an address that was

displayed earlier, type disassemble; then move the cursor to the address display, and

pick up the argument for disassemble by typing C-x &.

You can customize this further by de�ning elements of the list gdb-print-command;

once it is de�ned, you can format or otherwise process numbers picked up by C-x &

before they are inserted. A numeric argument to C-x & indicates that you wish special

formatting, and also acts as an index to pick an element of the list. If the list element

is a string, the number to be inserted is formatted using the Emacs function format;

otherwise the number is passed as an argument to the corresponding list element.

In any source �le, the Emacs command C-x SPC (gdb-break) tells GDB to set a breakpoint on

the source line point is on.

If you accidentally delete the source-display bu�er, an easy way to get it back is to type the

command f in the GDB bu�er, to request a frame display; when you run under Emacs, this recreates

the source bu�er if necessary to show you the context of the current frame.

The source �les displayed in Emacs are in ordinary Emacs bu�ers which are visiting the source

�les in the usual way. You can edit the �les with these bu�ers if you wish; but keep in mind that

GDB communicates with Emacs in terms of line numbers. If you add or delete lines from the text,

the line numbers that GDB knows cease to correspond properly with the code.

134 Debugging with GDB (HP 9000 Systems)

Chapter 17: Reporting Bugs in GDB 135

17 Reporting Bugs in GDB

Your bug reports play an essential role in making GDB reliable.

Reporting a bug may help you by bringing a solution to your problem, or it may not. But in

any case the principal function of a bug report is to help the entire community by making the next

version of GDB work better. Bug reports are your contribution to the maintenance of GDB.

In order for a bug report to serve its purpose, you must include the information that enables us

to �x the bug.

17.1 Have you found a bug?

If you are not sure whether you have found a bug, here are some guidelines:

� If the debugger gets a fatal signal, for any input whatever, that is a GDB bug. Reliable

debuggers never crash.

� If GDB produces an error message for valid input, that is a bug.

� If GDB does not produce an error message for invalid input, that is a bug. However, you

should note that your idea of \invalid input" might be our idea of \an extension" or \support

for traditional practice".

� If you are an experienced user of debugging tools, your suggestions for improvement of GDB

are welcome in any case.

17.2 How to report bugs

If you obtained GDB (HP WDB 1.0) as part of your HP ANSI C, HP ANSI C++, or HP Fortran

compiler kit, report problems to your HP Support Representative.

If you obtained GDB (HP WDB 1.0) from the Hewlett-Packard Web site, report problems to

your HP Support Representative. Support is covered under the support contract for your HP

compiler.

The fundamental principle of reporting bugs usefully is this: report all the facts. If you are not

sure whether to state a fact or leave it out, state it!

136 Debugging with GDB (HP 9000 Systems)

Often people omit facts because they think they know what causes the problem and assume

that some details do not matter. Thus, you might assume that the name of the variable you use in

an example does not matter. Well, probably it does not, but one cannot be sure. Perhaps the bug

is a stray memory reference which happens to fetch from the location where that name is stored in

memory; perhaps, if the name were di�erent, the contents of that location would fool the debugger

into doing the right thing despite the bug. Play it safe and give a speci�c, complete example. That

is the easiest thing for you to do, and the most helpful.

Keep in mind that the purpose of a bug report is to enable us to �x the bug if it is new to us.

Therefore, always write your bug reports on the assumption that the bug has not been reported

previously.

Sometimes people give a few sketchy facts and ask, \Does this ring a bell?" Those bug reports

are useless, and we urge everyone to refuse to respond to them except to chide the sender to report

bugs properly.

To enable us to �x the bug, you should include all these things:

� The version of GDB. GDB announces it if you start with no arguments; you can also print it

at any time using show version.

Without this, we will not know whether there is any point in looking for the bug in the current

version of GDB.

� The type of machine you are using, and the operating system name and version number.

� What compiler (and its version) was used to compile the program you are debugging|e.g.

\HP92453-01 A.10.32.03 HP C Compiler". Use the what command with the pathname of the

compile command (`what /opt/ansic/bin/cc', for example) to obtain this information.

� The command arguments you gave the compiler to compile your example and observe the bug.

For example, did you use `-O'? To guarantee you will not omit something important, list them

all. A copy of the Make�le (or the output from make) is su�cient.

If we were to try to guess the arguments, we would probably guess wrong and then we might

not encounter the bug.

� A complete input script, and all necessary source �les, that will reproduce the bug.

� A description of what behavior you observe that you believe is incorrect. For example, \It gets

a fatal signal."

Of course, if the bug is that GDB gets a fatal signal, then we will certainly notice it. But if

the bug is incorrect output, we might not notice unless it is glaringly wrong. You might as

well not give us a chance to make a mistake.

Chapter 17: Reporting Bugs in GDB 137

Even if the problem you experience is a fatal signal, you should still say so explicitly. Sup-

pose something strange is going on, such as, your copy of GDB is out of synch, or you have

encountered a bug in the C library on your system. (This has happened!) Your copy might

crash and ours would not. If you told us to expect a crash, then when ours fails to crash, we

would know that the bug was not happening for us. If you had not told us to expect a crash,

then we would not be able to draw any conclusion from our observations.

Here are some things that are not necessary:

� A description of the envelope of the bug.

Often people who encounter a bug spend a lot of time investigating which changes to the input

�le will make the bug go away and which changes will not a�ect it.

This is often time consuming and not very useful, because the way we will �nd the bug is by

running a single example under the debugger with breakpoints, not by pure deduction from a

series of examples. We recommend that you save your time for something else.

Of course, if you can �nd a simpler example to report instead of the original one, that is a

convenience for us. Errors in the output will be easier to spot, running under the debugger

will take less time, and so on.

However, simpli�cation is not vital; if you do not want to do this, report the bug anyway and

send us the entire test case you used.

� A patch for the bug.

A patch for the bug does help us if it is a good one. But do not omit the necessary information,

such as the test case, on the assumption that a patch is all we need. We might see problems

with your patch and decide to �x the problem another way, or we might not understand it at

all.

Sometimes with a program as complicated as GDB it is very hard to construct an example

that will make the program follow a certain path through the code. If you do not send us the

example, we will not be able to construct one, so we will not be able to verify that the bug is

�xed.

And if we cannot understand what bug you are trying to �x, or why your patch should be an

improvement, we will not install it. A test case will help us to understand.

� A guess about what the bug is or what it depends on.

Such guesses are usually wrong. Even we cannot guess right about such things without �rst

using the debugger to �nd the facts.

138 Debugging with GDB (HP 9000 Systems)

Appendix A: Command Line Editing 139

Appendix A CommandLine Editing

This text describes GNU's command line editing interface.

A.1 Introduction to Line Editing

The following paragraphs describe the notation we use to represent keystrokes.

The text C-K is read as `Control-K' and describes the character produced when the Control key

is depressed and the K key is struck.

The text M-K is read as `Meta-K' and describes the character produced when the meta key (if

you have one) is depressed, and the K key is struck. If you do not have a meta key, the identical

keystroke can be generated by typing ESC �rst, and then typing K. Either process is known as

metafying the K key.

The text M-C-K is read as `Meta-Control-k' and describes the character produced by metafying

C-K.

In addition, several keys have their own names. Speci�cally, DEL, ESC, LFD, SPC, RET, and TAB

all stand for themselves when seen in this text, or in an init �le (see Section A.3 [Readline Init

File], page 142, for more info).

A.2 Readline Interaction

Often during an interactive session you type in a long line of text, only to notice that the �rst

word on the line is misspelled. The Readline library gives you a set of commands for manipulating

the text as you type it in, allowing you to just �x your typo, and not forcing you to retype the

majority of the line. Using these editing commands, you move the cursor to the place that needs

correction, and delete or insert the text of the corrections. Then, when you are satis�ed with the

line, you simply press RET. You do not have to be at the end of the line to press RET; the entire

line is accepted regardless of the location of the cursor within the line.

140 Debugging with GDB (HP 9000 Systems)

A.2.1 Readline Bare Essentials

In order to enter characters into the line, simply type them. The typed character appears where

the cursor was, and then the cursor moves one space to the right. If you mistype a character, you

can use DEL to back up, and delete the mistyped character.

Sometimes you may miss typing a character that you wanted to type, and not notice your error

until you have typed several other characters. In that case, you can type C-B to move the cursor

to the left, and then correct your mistake. Aftwerwards, you can move the cursor to the right with

C-F.

When you add text in the middle of a line, you will notice that characters to the right of the

cursor get `pushed over' to make room for the text that you have inserted. Likewise, when you

delete text behind the cursor, characters to the right of the cursor get `pulled back' to �ll in the

blank space created by the removal of the text. A list of the basic bare essentials for editing the

text of an input line follows.

C-B Move back one character.

C-F Move forward one character.

DEL Delete the character to the left of the cursor.

C-D Delete the character underneath the cursor.

Printing characters

Insert itself into the line at the cursor.

C-_ Undo the last thing that you did. You can undo all the way back to an empty line.

A.2.2 Readline Movement Commands

The above table describes the most basic possible keystrokes that you need in order to do editing

of the input line. For your convenience, many other commands have been added in addition to C-B,

C-F, C-D, and DEL. Here are some commands for moving more rapidly about the line.

C-A Move to the start of the line.

C-E Move to the end of the line.

M-F Move forward a word.

M-B Move backward a word.

Appendix A: Command Line Editing 141

C-L Clear the screen, reprinting the current line at the top.

Notice how C-F moves forward a character, while M-F moves forward a word. It is a loose

convention that control keystrokes operate on characters while meta keystrokes operate on words.

A.2.3 Readline Killing Commands

Killing text means to delete the text from the line, but to save it away for later use, usually by

yanking it back into the line. If the description for a command says that it `kills' text, then you

can be sure that you can get the text back in a di�erent (or the same) place later.

Here is the list of commands for killing text.

C-K Kill the text from the current cursor position to the end of the line.

M-D Kill from the cursor to the end of the current word, or if between words, to the end of

the next word.

M-DEL Kill from the cursor to the start of the previous word, or if between words, to the start

of the previous word.

C-W Kill from the cursor to the previous whitespace. This is di�erent than M-DEL because

the word boundaries di�er.

And, here is how to yank the text back into the line.

C-Y Yank the most recently killed text back into the bu�er at the cursor.

M-Y Rotate the kill-ring, and yank the new top. You can only do this if the prior command

is C-Y or M-Y.

When you use a kill command, the text is saved in a kill-ring. Any number of consecutive kills

save all of the killed text together, so that when you yank it back, you get it in one clean sweep.

The kill ring is not line speci�c; the text that you killed on a previously typed line is available to

be yanked back later, when you are typing another line.

142 Debugging with GDB (HP 9000 Systems)

A.2.4 Readline Arguments

You can pass numeric arguments to Readline commands. Sometimes the argument acts as a

repeat count, other times it is the sign of the argument that is signi�cant. If you pass a negative

argument to a command which normally acts in a forward direction, that command will act in a

backward direction. For example, to kill text back to the start of the line, you might type M-- C-K.

The general way to pass numeric arguments to a command is to type meta digits before the

command. If the �rst `digit' you type is a minus sign (-), then the sign of the argument will

be negative. Once you have typed one meta digit to get the argument started, you can type

the remainder of the digits, and then the command. For example, to give the C-D command an

argument of 10, you could type M-1 0 C-D.

A.3 Readline Init File

Although the Readline library comes with a set of gnu Emacs-like keybindings, it is possible

that you would like to use a di�erent set of keybindings. You can customize programs that use

Readline by putting commands in an init �le in your home directory. The name of this �le is

`~/.inputrc'.

When a program which uses the Readline library starts up, the `~/.inputrc' �le is read, and

the keybindings are set.

In addition, the C-X C-R command re-reads this init �le, thus incorporating any changes that

you might have made to it.

A.3.1 Readline Init Syntax

There are only four constructs allowed in the `~/.inputrc' �le:

Variable Settings

You can change the state of a few variables in Readline. You do this by using the set

command within the init �le. Here is how you would specify that you wish to use vi

line editing commands:

set editing-mode vi

Appendix A: Command Line Editing 143

Right now, there are only a few variables which can be set; so few in fact, that we just

iterate them here:

editing-mode

The editing-mode variable controls which editing mode you are using.

By default, gnu Readline starts up in Emacs editing mode, where the

keystrokes are most similar to Emacs. This variable can either be set to

emacs or vi.

horizontal-scroll-mode

This variable can either be set to On or Off. Setting it to On means that

the text of the lines that you edit will scroll horizontally on a single screen

line when they are larger than the width of the screen, instead of wrapping

onto a new screen line. By default, this variable is set to Off.

mark-modified-lines

This variable when set to On, says to display an asterisk (`*') at the starts

of history lines which have been modi�ed. This variable is o� by default.

prefer-visible-bell

If this variable is set to On it means to use a visible bell if one is available,

rather than simply ringing the terminal bell. By default, the value is Off.

Key Bindings

The syntax for controlling keybindings in the `~/.inputrc' �le is simple. First you

have to know the name of the command that you want to change. The following pages

contain tables of the command name, the default keybinding, and a short description

of what the command does.

Once you know the name of the command, simply place the name of the key you wish

to bind the command to, a colon, and then the name of the command on a line in the

`~/.inputrc' �le. The name of the key can be expressed in di�erent ways, depending

on which is most comfortable for you.

keyname: function-name or macro

keyname is the name of a key spelled out in English. For example:

Control-u: universal-argument

Meta-Rubout: backward-kill-word

Control-o: ">&output"

In the above example, C-U is bound to the function universal-argument,

and C-O is bound to run the macro expressed on the right hand side (that

is, to insert the text `>&output' into the line).

"keyseq": function-name or macro

keyseq di�ers from keyname above in that strings denoting an entire key

sequence can be speci�ed. Simply place the key sequence in double quotes.

gnu Emacs style key escapes can be used, as in the following example:

144 Debugging with GDB (HP 9000 Systems)

"\C-u": universal-argument

"\C-x\C-r": re-read-init-file

"\e[11~": "Function Key 1"

In the above example, C-U is bound to the function universal-argument

(just as it was in the �rst example), C-X C-R is bound to the function re-

read-init-file, and ESC [1 1 ~ is bound to insert the text `Function

Key 1'.

A.3.1.1 Commands For Moving

beginning-of-line (C-A)

Move to the start of the current line.

end-of-line (C-E)

Move to the end of the line.

forward-char (C-F)

Move forward a character.

backward-char (C-B)

Move back a character.

forward-word (M-F)

Move forward to the end of the next word.

backward-word (M-B)

Move back to the start of this, or the previous, word.

clear-screen (C-L)

Clear the screen leaving the current line at the top of the screen.

A.3.1.2 Commands For Manipulating The History

accept-line (Newline, Return)

Accept the line regardless of where the cursor is. If this line is non-empty, add it to the

history list. If this line was a history line, then restore the history line to its original

state.

previous-history (C-P)

Move `up' through the history list.

next-history (C-N)

Move `down' through the history list.

Appendix A: Command Line Editing 145

beginning-of-history (M-<)

Move to the �rst line in the history.

end-of-history (M->)

Move to the end of the input history, i.e., the line you are entering.

reverse-search-history (C-R)

Search backward starting at the current line and moving `up' through the history as

necessary. This is an incremental search.

forward-search-history (C-S)

Search forward starting at the current line and moving `down' through the the history

as necessary.

A.3.1.3 Commands For Changing Text

delete-char (C-D)

Delete the character under the cursor. If the cursor is at the beginning of the line,

and there are no characters in the line, and the last character typed was not C-D, then

return EOF.

backward-delete-char (Rubout)

Delete the character behind the cursor. A numeric argument says to kill the characters

instead of deleting them.

quoted-insert (C-Q, C-V)

Add the next character that you type to the line verbatim. This is how to insert things

like C-Q for example.

tab-insert (M-TAB)

Insert a tab character.

self-insert (a, b, A, 1, !, ...)

Insert yourself.

transpose-chars (C-T)

Drag the character before point forward over the character at point. Point moves

forward as well. If point is at the end of the line, then transpose the two characters

before point. Negative arguments don't work.

transpose-words (M-T)

Drag the word behind the cursor past the word in front of the cursor moving the cursor

over that word as well.

146 Debugging with GDB (HP 9000 Systems)

upcase-word (M-U)

Uppercase all letters in the current (or following) word. With a negative argument, do

the previous word, but do not move point.

downcase-word (M-L)

Lowercase all letters in the current (or following) word. With a negative argument, do

the previous word, but do not move point.

capitalize-word (M-C)

Uppercase the �rst letter in the current (or following) word. With a negative argument,

do the previous word, but do not move point.

A.3.1.4 Killing And Yanking

kill-line (C-K)

Kill the text from the current cursor position to the end of the line.

backward-kill-line ()

Kill backward to the beginning of the line. This is normally unbound.

kill-word (M-D)

Kill from the cursor to the end of the current word, or if between words, to the end of

the next word.

backward-kill-word (M-DEL)

Kill the word behind the cursor.

unix-line-discard (C-U)

Kill the whole line the way C-U used to in Unix line input. The killed text is saved on

the kill-ring.

unix-word-rubout (C-W)

Kill the word the way C-W used to in Unix line input. The killed text is saved on the

kill-ring. This is di�erent than backward-kill-word because the word boundaries di�er.

yank (C-Y)

Yank the top of the kill ring into the bu�er at point.

yank-pop (M-Y)

Rotate the kill-ring, and yank the new top. You can only do this if the prior command

is yank or yank-pop.

Appendix A: Command Line Editing 147

A.3.1.5 Specifying Numeric Arguments

digit-argument (M-0, M-1, ... M--)

Add this digit to the argument already accumulating, or start a new argument. M--

starts a negative argument.

universal-argument ()

Do what C-U does in gnu Emacs. By default, this is not bound.

A.3.1.6 Letting Readline Type For You

complete (TAB)

Attempt to do completion on the text before point. This is implementation de�ned.

Generally, if you are typing a �lename argument, you can do �lename completion; if

you are typing a command, you can do command completion, if you are typing in a

symbol to GDB, you can do symbol name completion, if you are typing in a variable

to Bash, you can do variable name completion.

possible-completions (M-?)

List the possible completions of the text before point.

A.3.1.7 Some Miscellaneous Commands

re-read-init-file (C-X C-R)

Read in the contents of your `~/.inputrc' �le, and incorporate any bindings found

there.

abort (C-G)

Stop running the current editing command.

prefix-meta (ESC)

Make the next character that you type be meta�ed. This is for people without a meta

key. Typing ESC F is equivalent to typing M-F.

undo (C-_)

Incremental undo, separately remembered for each line.

148 Debugging with GDB (HP 9000 Systems)

revert-line (M-R)

Undo all changes made to this line. This is like typing the `undo' command enough

times to get back to the beginning.

A.3.2 Readline viMode

While the Readline library does not have a full set of vi editing functions, it does contain enough

to allow simple editing of the line.

In order to switch interactively between gnu Emacs and vi editing modes, use the command

M-C-J (toggle-editing-mode).

When you enter a line in vi mode, you are already placed in `insertion' mode, as if you had

typed an `i'. Pressing ESC switches you into `edit' mode, where you can edit the text of the line

with the standard vi movement keys, move to previous history lines with `k', and following lines

with `j', and so forth.

Appendix B: Using History Interactively 149

Appendix B Using History Interactively

This chapter describes how to use the GNU History Library interactively, from a user's stand-

point.

B.1 History Interaction

The History library provides a history expansion feature similar to the history expansion in csh.

The following text describes the syntax you use to manipulate history information.

History expansion takes two parts. In the �rst part, determine which line from the previous

history will be used for substitution. This line is called the event. In the second part, select portions

of that line for inclusion into the current line. These portions are called words. GDB breaks the

line into words in the same way that the Bash shell does, so that several English (or Unix) words

surrounded by quotes are considered one word.

B.1.1 Event Designators

An event designator is a reference to a command line entry in the history list.

! Start a history subsititution, except when followed by a space, tab, or the end of the

line... = or (.

!! Refer to the previous command. This is a synonym for !-1.

!n Refer to command line n.

!-n Refer to the command line n lines back.

!string Refer to the most recent command starting with string.

!?string[?]

Refer to the most recent command containing string.

B.1.2 Word Designators

A : separates the event designator from the word designator. It can be omitted if the word

designator begins with a ^, $, * or %. Words are numbered from the beginning of the line, with the

�rst word being denoted by a 0 (zero).

150 Debugging with GDB (HP 9000 Systems)

0 (zero) The zero'th word. For many applications, this is the command word.

n The n'th word.

^ The �rst argument. that is, word 1.

$ The last argument.

% The word matched by the most recent ?string? search.

x-y A range of words; -y Abbreviates 0-y .

* All of the words, excepting the zero'th. This is a synonym for 1-$. It is not an error to

use * if there is just one word in the event. The empty string is returned in that case.

B.1.3 Modi�ers

After the optional word designator, you can add a sequence of one or more of the following

modi�ers, each preceded by a :.

The entire command line typed so far. This means the current command, not the

previous command.

h Remove a trailing pathname component, leaving only the head.

r Remove a trailing su�x of the form `.'su�x, leaving the basename.

e Remove all but the su�x.

t Remove all leading pathname components, leaving the tail.

p Print the new command but do not execute it.

Appendix C: Installing GDB 151

Appendix C Installing GDB

If you obtain GDB (HP WDB 1.0) as part of the HP ANSI C or HP ANSI C++ Developer's Kit

for HP-UX Release 11.0, you do not have to take any special action to build or install GDB.

If you obtain GDB (HP WDB 1.0) from an HP web site, you may download either a swinstall-

able package or a source tree, or both.

Most customers will want to install the GDB binary that is part of the swinstall package. To

do so, use a command of the form

/usr/sbin/swinstall -s package-name WDB

Alternatively, it is possible to build GDB from the source distribution. If you who want to modify

the debugger sources to tailor GDB to your needs you may wish to do this. The source distribution

consists of a tar �le containing the source tree rooted at `gdb-4.16/...'. The instructions that

follow describe how to build a `gdb' executable from this source tree. HP believes that these

instructions apply to the WDB source tree that it distributes. However, HP does not explicitly

support building a `gdb' for any non-HP platform from the WDB source tree. It may work, but

HP has not tested it for any platforms other than those described in the WDB 1.0 Release Notes.

GDB comes with a configure script that automates the process of preparing GDB for instal-

lation; you can then use make to build the gdb program.1

The GDB distribution includes all the source code you need for GDB in a single directory, whose

name is usually composed by appending the version number to `gdb'.

For example, the GDB version 4.16 distribution is in the `gdb-4.16' directory. That directory

contains:

gdb-4.16/configure (and supporting �les)

script for con�guring GDB and all its supporting libraries

gdb-4.16/gdb

the source speci�c to GDB itself

1 If you have a more recent version of GDB than 4.16, look at the `README' �le in the sources; we

may have improved the installation procedures since publishing this manual.

152 Debugging with GDB (HP 9000 Systems)

gdb-4.16/bfd

source for the Binary File Descriptor library

gdb-4.16/include

gnu include �les

gdb-4.16/libliberty

source for the `-liberty' free software library

gdb-4.16/opcodes

source for the library of opcode tables and disassemblers

gdb-4.16/readline

source for the gnu command-line interface

gdb-4.16/glob

source for the gnu �lename pattern-matching subroutine

gdb-4.16/mmalloc

source for the gnu memory-mapped malloc package

The simplest way to con�gure and build GDB is to run configure from the `gdb-version-

number' source directory, which in this example is the `gdb-4.16' directory.

First switch to the `gdb-version-number' source directory if you are not already in it; then run

configure. Pass the identi�er for the platform on which GDB will run as an argument.

For example:

cd gdb-4.16

./configure host
make

where host is an identi�er such as `sun4' or `decstation', that identi�es the platform where GDB

will run. (You can often leave o� host; configure tries to guess the correct value by examining

your system.)

Running `configure host' and then running make builds the `bfd', `readline', `mmalloc', and

`libiberty' libraries, then gdb itself. The con�gured source �les, and the binaries, are left in the

corresponding source directories.

configure is a Bourne-shell (/bin/sh) script; if your system does not recognize this automati-

cally when you run a di�erent shell, you may need to run sh on it explicitly:

Appendix C: Installing GDB 153

sh configure host

If you run configure from a directory that contains source directories for multiple libraries or

programs, such as the `gdb-4.16' source directory for version 4.16, configure creates con�guration

�les for every directory level underneath (unless you tell it not to, with the `--norecursion' option).

You can run the configure script from any of the subordinate directories in the GDB distribu-

tion if you only want to con�gure that subdirectory, but be sure to specify a path to it.

For example, with version 4.16, type the following to con�gure only the bfd subdirectory:

cd gdb-4.16/bfd

../configure host

You can install gdb anywhere; it has no hardwired paths. However, you should make sure

that the shell on your path (named by the `SHELL' environment variable) is publicly readable.

Remember that GDB uses the shell to start your program|some systems refuse to let GDB debug

child processes whose programs are not readable.

C.1 Compiling GDB in another directory

If you want to run GDB versions for several host or target machines, you need a di�erent gdb

compiled for each combination of host and target. configure is designed to make this easy by

allowing you to generate each con�guration in a separate subdirectory, rather than in the source

directory. If your make program handles the `VPATH' feature (gnu make does), running make in each

of these directories builds the gdb program speci�ed there.

To build gdb in a separate directory, run configure with the `--srcdir' option to specify where

to �nd the source. (You also need to specify a path to �nd configure itself from your working

directory. If the path to configure would be the same as the argument to `--srcdir', you can

leave out the `--srcdir' option; it is assumed.)

For example, with version 4.16, you can build GDB in a separate directory for a Sun 4 like this:

154 Debugging with GDB (HP 9000 Systems)

cd gdb-4.16

mkdir ../gdb-sun4

cd ../gdb-sun4

../gdb-4.16/configure sun4

make

When configure builds a con�guration using a remote source directory, it creates a tree for the

binaries with the same structure (and using the same names) as the tree under the source directory.

In the example, you'd �nd the Sun 4 library `libiberty.a' in the directory `gdb-sun4/libiberty',

and GDB itself in `gdb-sun4/gdb'.

One popular reason to build several GDB con�gurations in separate directories is to con�gure

GDB for cross-compiling (where GDB runs on one machine|the host|while debugging programs

that run on another machine|the target). You specify a cross-debugging target by giving the

`--target=target' option to configure.

When you run make to build a program or library, you must run it in a con�gured directory|

whatever directory you were in when you called configure (or one of its subdirectories).

The Makefile that configure generates in each source directory also runs recursively. If you

type make in a source directory such as `gdb-4.16' (or in a separate con�gured directory con�gured

with `--srcdir=dirname/gdb-4.16'), you will build all the required libraries, and then build GDB.

When you have multiple hosts or targets con�gured in separate directories, you can run make

on them in parallel (for example, if they are NFS-mounted on each of the hosts); they will not

interfere with each other.

C.2 Specifying names for hosts and targets

The speci�cations used for hosts and targets in the configure script are based on a three-part

naming scheme, but some short prede�ned aliases are also supported. The full naming scheme

encodes three pieces of information in the following pattern:

architecture-vendor-os

For example, you can use the alias sun4 as a host argument, or as the value for target in a

--target=target option. The equivalent full name is `sparc-sun-sunos4'.

Appendix C: Installing GDB 155

The configure script accompanying GDB does not provide any query facility to list all sup-

ported host and target names or aliases. configure calls the Bourne shell script config.sub to

map abbreviations to full names; you can read the script, if you wish, or you can use it to test your

guesses on abbreviations|for example:

% sh config.sub sun4

sparc-sun-sunos4.1.1

% sh config.sub sun3

m68k-sun-sunos4.1.1

% sh config.sub decstation

mips-dec-ultrix4.2

% sh config.sub hp300bsd

m68k-hp-bsd

% sh config.sub i386v

i386-unknown-sysv

% sh config.sub i786v

Invalid configuration `i786v': machine `i786v' not recognized

config.sub is also distributed in the GDB source directory (`gdb-4.16', for version 4.16).

C.3 configure options

Here is a summary of the configure options and arguments that are most often useful for build-

ing GDB. configure also has several other options not listed here. See Info �le `configure.info',

node `What Configure Does', for a full explanation of configure.

configure [--help]
[--prefix=dir]
[--srcdir=dirname]
[--norecursion] [--rm]
[--target=target] host

You may introduce options with a single `-' rather than `--' if you prefer; but you may abbreviate

option names if you use `--'.

--help Display a quick summary of how to invoke configure.

-prefix=dir

Con�gure the source to install programs and �les under directory `dir'.

156 Debugging with GDB (HP 9000 Systems)

--srcdir=dirname

Warning: using this option requires gnu make, or another make that implements the

VPATH feature.

Use this option to make con�gurations in directories separate from the GDB source

directories. Among other things, you can use this to build (or maintain) several con�gu-

rations simultaneously, in separate directories. configure writes con�guration speci�c

�les in the current directory, but arranges for them to use the source in the directory

dirname. configure creates directories under the working directory in parallel to the

source directories below dirname.

--norecursion

Con�gure only the directory level where configure is executed; do not propagate

con�guration to subdirectories.

--rm Remove �les otherwise built during con�guration.

--target=target

Con�gure GDB for cross-debugging programs running on the speci�ed target. Without

this option, GDB is con�gured to debug programs that run on the same machine (host)

as GDB itself.

There is no convenient way to generate a list of all available targets.

host . . . Con�gure GDB to run on the speci�ed host.

There is no convenient way to generate a list of all available hosts.

configure accepts other options, for compatibility with con�guring other gnu tools recursively;

but these are the only options that a�ect GDB or its supporting libraries.

Index 157

Index

#
. 17

$
$. 81

$$. 81

$. 83

$ and info breakpoints . 35

$ and info line . 64

$, $, and value history . 73

$. 83

$ exitcode . 83

$bpnum . 34

$cdir. 62

$cwd . 62

.
`.gdbinit' . 63, 127

.inputrc . 120

:
:: . 69

@

@ . 70

{

{type}. 68

A
abbreviation . 17

active targets . 115

arguments (to your program) . 25

arti�cial array . 70

assembly instructions . 64

assignment . 103

attach . 28

automatic display . 74

automatic thread selection . 31

B
b . 34

backtrace . 54

backtraces . 54

break. 34

break thread threadno . 51

break in overloaded functions . 94

breakpoint commands . 43

breakpoint conditions . 41

breakpoint in shared libraries . 50

breakpoint numbers . 34

breakpoint on events . 33

breakpoint on memory address . 33

breakpoint on variable modi�cation 33

breakpoints . 33

breakpoints and threads . 51

bt . 54

bug criteria . 135

bug reports . 135

bugs in GDB . 135

C
c . 45

C and C++ constants . 92

C and C++ defaults . 93

C and C++ operators . 90

C++ . 89

C++ exception handling . 94

C++ scope resolution . 69

C++ symbol decoding style . 80

C++ symbol display . 94

call . 106

call overloaded functions . 92

call stack . 53

calling functions . 106

calling make . 15

casts, to view memory . 68

catch. 38

catch catch . 38

158 Debugging with GDB (HP 9000 Systems)

catch exec . 38

catch fork . 38

catch load . 38

catch load . 50

catch throw . 38

catch unload . 38

catch vfork . 38

catchpoints . 33, 38

cd . 27

cdir . 62

clear. 39

clearing breakpoints, watchpoints, catchpoints 39

colon-colon . 69

command �les . 126, 127

command line editing . 119

commands . 43

commands for C++ . 94

comment . 17

compilation directory . 62

complete . 20

completion. 18

completion of quoted strings . 19

condition . 42

conditional breakpoints . 41

con�guring GDB . 151

con�rmation . 124

continue . 45

continuing . 45

continuing threads . 51

controlling terminal . 27

convenience variables . 82

core . 110

core dump �le . 109

core-file . 110

crash of debugger . 135

current directory . 62

current thread . 30

cwd . 62

D
d . 39

debugger crash . 135

debugging optimized code . 23

debugging target. 115

deferred breakpoints . 50

define . 125

delete . 39

delete breakpoints . 39

delete display . 75

deleting breakpoints, watchpoints, catchpoints 39

demangling . 79

detach . 28

dir . 62, 63

directories for source �les . 61

directory . 62

directory, compilation . 62

directory, current . 62

dis . 40

disable . 40

disable breakpoints . 40

disable display . 75

disassemble . 64

display . 74

display of expressions . 74

do . 56

document . 126

down . 56

down-silently . 56

E
echo . 128

editing . 119

editing-mode . 143

else . 125

Emacs . 131

enable . 40

enable breakpoints . 40

enable display . 75

end . 43

entering numbers . 122

environment (of your program) . 25

error on valid input . 135

event designators . 149

event handling . 38

examining data . 67

examining memory. 72

Index 159

exception handlers . 38

exec-file . 109

executable �le . 109

exiting GDB . 14

expansion . 149

expressions . 67

expressions in C++ . 92

F
f . 55

fatal signal . 135

fatal signals . 48

fg . 45

file . 109

�les, missing . 63

�les, object . 62

�les, source . 61

�nding �les . 63

finish . 46

inching . 124

oating point . 85

oating point registers . 84

focus of debugging . 30

foo . 112

fork, debugging programs which call 31

format options . 76

formatted output . 71

Fortran . 89

Fortran common blocks . 97

Fortran entry points . 97

Fortran operators . 96

Fortran support. 95

Fortran types . 95

Fortran variables. 97

forward-search . 61

frame . 53

frame . 54, 55

frame number . 54

frame pointer . 53

frameless execution . 54

G
g++ . 89

GDB bugs, reporting . 135

GDBHISTFILE . 120

gdbinit . 63

gnu C++ . 89

gnu Emacs . 131

H
h . 20

handle . 48

handling signals . 48

help . 19

help target . 116

help user-defined . 126

history expansion . 120

history �le . 120

history number . 81

history save . 120

history size . 120

history substitution . 120

history vi key bindings . 120

horizontal-scroll-mode . 143

I
i . 21

i/o . 27

if . 125

ignore . 42

ignore count (of breakpoint) . 42

info . 21

info address . 99

info all-registers . 84

info args . 57

info breakpoints . 35

info display . 75

info f . 56

info files . 110

info float . 85

info frame . 56, 89

info functions . 100

info line . 64

info locals . 57

info program . 33

info registers . 84

160 Debugging with GDB (HP 9000 Systems)

info s . 55

info set . 21

info share . 111

info sharedlibrary . 111

info signals . 48

info source . 89, 100

info sources . 100

info stack . 55

info target . 110

info terminal . 27

info threads . 30

info types . 100

info variables . 100

info watchpoints . 37

inheritance . 94

init �le . 127

initial frame . 53

innermost frame . 53

inputrc . 120

inspect . 67

installation . 151

instructions, assembly . 64

interaction, readline . 139

internal GDB breakpoints . 36

interrupt . 14

invalid input . 135

J
jump . 105

K
kill . 29

L
l . 59

languages . 87

latest breakpoint . 34

leaving GDB . 14

libraries, shared private mapping 50

linespec . 60

list . 59

listing machine instructions . 64

M
machine instructions . 64

main in Fortran . 97

maint info breakpoints . 36

maint print psymbols . 101

maint print symbols . 101

make . 15

mark-modified-lines . 143

member functions . 92

memory tracing . 33

memory, viewing as typed object 68

missing �les . 63

multiple processes . 31

multiple targets . 115

multiple threads . 29

N
n . 46

names of symbols . 99

namespace in C++ . 92

negative breakpoint numbers . 36

New systag . 30

next . 46

nexti. 48

ni . 48

number representation . 122

numbers for breakpoints . 34

O
object �les . 62

objectdir . 63

objectload . 63

objectretry . 63

online documentation . 19

optimized code, debugging . 23

outermost frame . 53

output . 128

output formats . 71

overloaded functions . 92, 95

overloading . 44

overloading in C++ . 94

Index 161

P
partial symbol dump . 101

patching binaries . 106

path . 26

path names . 62

path, object �le . 62

path, object �les . 64

path, source �le . 63

pauses in output . 121

pipes . 25

pointer, �nding referent . 77

prefer-visible-bell . 143

print. 67

print settings . 76

printf . 128

printing data . 67

privately mapping shared libraries 50

processes, multiple . 31

prompt . 119

ptype. 99

pwd . 27

pxdb . 50

Q
q . 14

quit [expression] . 14

quotes in commands . 19

quoting names . 99

R
rbreak . 35

readline . 119

redirection . 27

reference declarations . 93

registers . 84

regular expression . 35

repeating commands . 17

reporting bugs in GDB . 135

resuming execution . 45

RET . 17

return . 106

returning from a function . 106

reverse-search . 61

run . 24

running . 24

running process, shared library . 50

S
s . 46

search . 61

searching . 61

select-frame . 54

selected frame . 53

set . 21

set args . 25

set auto-solib-add . 111

set complaints . 123

set confirm . 124

set demangle-style . 80

set editing . 119

set environment . 26

set follow-fork-mode . 31

set gnutarget . 116

set height . 122

set history expansion . 121

set history filename . 120

set history save . 120

set history size . 120

set input-radix . 122

set language . 88

set listsize . 59

set opaque-type-resolution . 101

set output-radix . 122

set overload-resolution . 95

set print address. 76

set print array . 77

set print asm-demangle . 79

set print demangle . 79

set print elements . 78

set print max-symbolic-offset 77

set print null-stop . 78

set print object . 80

set print pretty . 78

set print sevenbit-strings . 78

set print static-members . 80

set print symbol-filename . 76

162 Debugging with GDB (HP 9000 Systems)

set print union . 79

set print vtbl . 81

set prompt . 119

set variable . 103

set verbose . 123

set width . 122

set write . 107

setting variables . 103

setting watchpoints . 37

share . 111

shared libaries, symbols . 111

shared libraries . 110, 111

shared libraries, loading . 38

shared libraries, mapping . 50

sharedlibrary . 111

shell. 14

shell escape . 14

show . 21

show args . 25

show auto-solib-add . 111

show commands . 121

show complaints . 123

show confirm . 124

show convenience . 83

show copying . 21

show demangle-style . 80

show directories . 62

show editing . 120

show environment . 26

show gnutarget . 116

show height . 122

show history . 121

show input-radix . 122

show language . 89

show listsize . 59

show opaque-type-resolution. 101

show output-radix . 123

show paths . 26

show print address . 76

show print array . 78

show print asm-demangle . 80

show print demangle . 79

show print elements . 78

show print max-symbolic-offset 77

show print object. 80

show print pretty. 78

show print sevenbit-strings . 79

show print static-members . 80

show print symbol-filename . 77

show print union . 79

show print vtbl . 81

show prompt . 119

show user . 126

show values . 82

show verbose . 123

show version . 21

show warranty . 21

show width . 122

show write . 107

si . 47

signal . 105

signals . 48

silent . 43

size of screen . 121

source . 127

source �les . 62

source path . 61, 63

stack frame . 53

stack traces . 54

stacking targets . 115

starting . 24

step . 46

stepi. 47

stepping . 45

stopped threads . 51

stupid questions . 124

switching threads . 29

switching threads automatically . 31

symbol decoding style, C++ . 80

symbol dump . 101

symbol names . 99

symbol overloading . 44

symbol table . 109

symbol-file . 109

symbols, shared libraries . 111

Index 163

T
target . 115

target core . 116

target exec . 116

tbreak . 35

terminal . 27

this . 92

thread apply . 31

thread breakpoints . 51

thread identi�er (GDB) . 30

thread identi�er (system) . 30

thread number . 30

thread threadno . 30

threads and watchpoints . 38

threads of execution . 29

threads, automatic switching . 31

threads, continuing . 51

threads, stopped . 51

toggle-editing-mode . 148

tracebacks . 54

tty . 27

type casting memory . 68

type conversions in C++ . 92

U
u . 47

undisplay . 75

unknown address, locating . 71

unset environment . 26

until. 47

up . 55

up-silently . 56

user-de�ned command . 125

V
value history . 81

variable name con
ict . 69

variable values, wrong . 69

variables, setting . 103

version number . 21

vi key bindings . 120

vi style command editing . 148

W
watch. 37

watchpoints . 33

watchpoints and threads . 38

whatis . 99

where. 55

while . 125

wild pointer, interpreting . 77

word completion . 18

working directory . 62

working directory (of your program) 26

working language . 87

writing into core�les . 106

writing into executables . 106

wrong values . 69

X
x . 72

164 Debugging with GDB (HP 9000 Systems)

The body of this manual is set in

cmr10 at 10.95pt,

with headings in cmb10 at 10.95pt

and examples in cmtt10 at 10.95pt.

cmti10 at 10.95pt ,

cmb10 at 10.95pt, and

cmsl10 at 10.95pt

are used for emphasis.

i

Table of Contents

Summary of GDB. 1

Free software . 1

Contributors to GDB . 2

1 A Sample GDB Session . 5

2 Getting In and Out of GDB . 11

2.1 Invoking GDB . 11

2.1.1 Choosing �les . 12

2.1.2 Choosing modes . 13

2.2 Quitting GDB . 14

2.3 Shell commands . 14

3 GDB Commands . 17

3.1 Command syntax . 17

3.2 Command completion . 18

3.3 Getting help . 19

4 Running Programs Under GDB 23

4.1 Compiling for debugging . 23

4.2 Starting your program . 24

4.3 Your program's arguments . 25

4.4 Your program's environment . 25

4.5 Your program's working directory . 26

4.6 Your program's input and output . 27

4.7 Debugging an already-running process . 28

4.8 Killing the child process . 29

4.9 Debugging programs with multiple threads . 29

4.10 Debugging programs with multiple processes 31

5 Stopping and Continuing . 33

5.1 Breakpoints, watchpoints, and catchpoints . 33

5.1.1 Setting breakpoints . 34

5.1.2 Setting watchpoints . 37

5.1.3 Setting catchpoints . 38

5.1.4 Deleting breakpoints . 39

ii Debugging with GDB (HP 9000 Systems)

5.1.5 Disabling breakpoints . 40

5.1.6 Break conditions . 41

5.1.7 Breakpoint command lists . 43

5.1.8 Breakpoint menus . 44

5.2 Continuing and stepping . 45

5.3 Signals . 48

5.4 Stopping and starting in shared libraries . 49

5.4.1 Privately mapping shared libraries . 50

5.5 Stopping and starting multi-thread programs . 51

6 Examining the Stack . 53

6.1 Stack frames . 53

6.2 Backtraces . 54

6.3 Selecting a frame . 55

6.4 Information about a frame . 56

7 Examining Source Files . 59

7.1 Printing source lines . 59

7.2 Searching source �les . 61

7.3 Specifying source directories . 61

7.4 Specifying object �le directories . 62

7.5 Checklist for locating missing �les . 63

7.6 Source and machine code . 64

8 Examining Data . 67

8.1 Expressions . 67

8.2 Program variables . 68

8.3 Arti�cial arrays . 70

8.4 Output formats . 71

8.5 Examining memory. 72

8.6 Automatic display . 74

8.7 Print settings . 76

8.8 Value history . 81

8.9 Convenience variables . 82

8.10 Registers . 84

8.11 Floating point hardware . 85

9 Using GDB with Di�erent Languages 87

9.1 Switching between source languages . 87

9.1.1 List of �lename extensions and languages 87

9.1.2 Setting the working language . 88

9.1.3 Having GDB infer the source language 88

iii

9.2 Displaying the language . 89

9.3 Supported languages . 89

9.3.1 C and C++ operators . 90

9.3.2 C and C++ constants . 92

9.3.3 C++ expressions . 92

9.3.4 C and C++ defaults . 93

9.3.5 GDB and C . 94

9.3.6 GDB features for C++ . 94

9.3.7 GDB and Fortran . 95

9.3.7.1 Fortran types . 95

9.3.7.2 Fortran operators . 96

9.3.7.3 Using GDB with Fortran . 97

9.3.7.4 Fortran special issues . 97

10 Examining the Symbol Table . 99

11 Altering Execution . 103

11.1 Assignment to variables . 103

11.2 Continuing at a di�erent address . 104

11.3 Giving your program a signal . 105

11.4 Returning from a function . 106

11.5 Calling program functions . 106

11.6 Patching programs . 106

12 GDB Files . 109

12.1 Commands to specify �les . 109

12.2 Errors reading symbol �les . 111

13 Specifying a Debugging Target 115

13.1 Active targets. 115

13.2 Commands for managing targets . 116

14 Controlling GDB . 119

14.1 Prompt . 119

14.2 Command editing . 119

14.3 Command history . 120

14.4 Screen size. 121

14.5 Numbers . 122

14.6 Optional warnings and messages . 123

iv Debugging with GDB (HP 9000 Systems)

15 Canned Sequences of Commands 125

15.1 User-de�ned commands . 125

15.2 User-de�ned command hooks . 126

15.3 Command �les . 127

15.4 Commands for controlled output . 128

16 Using GDB under gnu Emacs 131

17 Reporting Bugs in GDB . 135

17.1 Have you found a bug? . 135

17.2 How to report bugs . 135

Appendix A Command Line Editing 139

A.1 Introduction to Line Editing . 139

A.2 Readline Interaction . 139

A.2.1 Readline Bare Essentials . 140

A.2.2 Readline Movement Commands . 140

A.2.3 Readline Killing Commands . 141

A.2.4 Readline Arguments . 142

A.3 Readline Init File . 142

A.3.1 Readline Init Syntax . 142

A.3.1.1 Commands For Moving . 144

A.3.1.2 Commands For Manipulating The History 144

A.3.1.3 Commands For Changing Text 145

A.3.1.4 Killing And Yanking . 146

A.3.1.5 Specifying Numeric Arguments 147

A.3.1.6 Letting Readline Type For You 147

A.3.1.7 Some Miscellaneous Commands 147

A.3.2 Readline vi Mode . 148

Appendix B Using History Interactively 149

B.1 History Interaction . 149

B.1.1 Event Designators . 149

B.1.2 Word Designators . 149

B.1.3 Modi�ers . 150

Appendix C Installing GDB . 151

C.1 Compiling GDB in another directory . 153

C.2 Specifying names for hosts and targets . 154

C.3 configure options . 155

v

Index . 157

vi Debugging with GDB (HP 9000 Systems)

